Example 0.1 (Enumerative Counting Problems). Let $f(n)$ be the number of n-step paths starting at the origin and taking non-intersecting steps in the directions $(0,1),(-1,0)$, or $(1,0)$, labeled N, W, and E respectively.
 in 11 steps
Then we can ditch the picture and instead count strings of $\{N, W, E\}$ letters where $E W$ or $W E$ does not appear as a factor.

Let's try to express $f(n)$ in terms of $f(k)$ for $k<n$, trying for polynomial coefficients. We can start from the end. A word of length n ends in:

$$
\begin{cases}N & f(n-1) \text { of these } \\ N W & f(n-2) \text { of these } \\ N E & \\ W W & f(n-1) \text { of these } N E, W W, \text { and } E E \text { combined } \\ E E & \end{cases}
$$

Then $\star N$ becomes $\star N E, \star W$ becomes $\star W W$, and $\star E$ becomes $E E$ when at the end of a word to give the three $N E, W W, E E$ cases becoming $f(n-1)$.

Alternatively, we can brute force it to get the first fer tewms to find a recurrence with linear algebra. Then $f(n)=2 f(n-1)+f(n-2)$ where $f(0)=1$ and $f(1)=3$. Then we have

$$
\sum_{n \geq 2} f(n) x^{n}=2 \sum_{n \geq 2} f(n-1) x^{n}+\sum_{n \geq 2} f(n-2) x^{n}
$$

Note that we can put $G(x)=\sum_{n \geq 0} f(n) x^{n}=1+3 x+\ldots$, so
$G(x)-1-3 x=\sum_{n \geq 2} f(n) x^{n}, 2 x[G(x)-1]=2 \sum_{n \geq 2} f(n-1) x^{n}$, and $x^{2} G(x)=\sum_{n \geq 2} f(n-2) x^{n}$
so we can rewrite our equation as

$$
G(x)-1-3 x=2 x[G(x)-1]+x^{2} G(x) .
$$

Then we can do some algebra to get

$$
G(x)=\frac{1+x}{1-2 x-x^{2}}=\frac{1+x}{(1-(1+\sqrt{2}) x)(1-(1-\sqrt{2}) x)}=\frac{A}{1-(1+\sqrt{2}) x}+\frac{B}{1-(1-\sqrt{2}) x}
$$

Next clear the denominators and compare coefficients and expand these geometric series to get

$$
G(x)=\sum_{n \geq 0}\left[\frac{1}{2}(1+\sqrt{2})^{n+1}+\frac{1}{2}(1-\sqrt{2})^{n+1}\right] x^{2} .
$$

Note that $1+\sqrt{2} \approx 2.414$ and $1-\sqrt{2} \approx-0.414<1$, so $f(n)=\frac{1}{2}(1+$ $\sqrt{2})^{n+1}+o(1)$.

In general, growth of the terms $\left\{a_{n}\right\}$ depends on the closest pole of $G(x)=$ $\sum a_{n} x^{n}$ to the origin, if $G(x)$ has isolated singularities.

Remark: $G(x)=\frac{p(x)}{q(x)}=\sum f(n) x^{n}$. Then there should be a linear recurrence for $f(n)$. If q has distinct roots, then recurrence has constant coefficients. There should be an explicit formula for $f(n)$ in terms of the roots of $q(x)$.

