1 Analysis of Algorithms

- how long your code takes to run, with "how long" referring to the number of steps. Then the question remains: what is a step?
- look for rough bounds, depend on size of the problem but don't depend on what computer you have

We say f(n) is O(g(n)) if there exist constants C, N such that $\forall n \geq N$, we have $f(n) \leq Cg(n)$. Or a lower bound Ω , then $f(n) \geq Cg(n)$. We say f(x) is $\theta(g(x))$ if both f(x) is O(g(x)) and f(x) is $\Omega(g(x))$.

Example 1.1 (Bubble Sort Algorithm). Input: list of numbers $L = [\ell_0, \ldots, \ell_n]$. Output: L, but sorted. Repeat the following:

for i from 0 to n-1:

if $\ell_i > \ell_{i+1}$:

swap ℓ_i with ℓ_{i+1} in L

Until we get through L without swapping anything.

Best case scenario: L is already sorted: then we have 0 swaps and n comparisons.

Worst case scenario: L is reverse sorted. Then this algorithm takes $O(n^2)$ steps. Note the n-1 in the algorithm: we have a possible optimization by decreasing this value by 1 at each pass. Without this optimization, the n passes take n steps each. With this optimization, however, $n + (n-1) + (n-2) + \ldots + 2 + 1$ steps $= \frac{n(n+1)}{2} = O(n^2)$ steps.

In the average case number of swaps: Imagine L is n uniform random numbers in [0, 1]. i.e. the ranking of elements of L gives a uniform $\pi \in S\pi$. The average case number of swaps is $E(inv(\pi)) = \frac{n(n+1)}{4} = O(n^2)$. Note that the best sorting algorithms are $\theta(n \log n)$.

The Euclidean algorithm for the greatest common divisors of two integers has input of two numbers, $q_0, q_1 \in \mathbb{N}$ with $q_0 > q_1$.

Then we write:

$$q_{0} = a_{1}q_{1} + q_{2}$$

$$q_{1} = a_{2}q_{2} + q_{3}$$

$$q_{2} = a_{3}q_{3} + q_{4}$$

$$\vdots$$

$$q_{k-1} = a_{k}q_{k} + q_{k+1}$$

$$q_{k} = a_{k+1}q_{k+1}$$

So q_{k+1} is the greatest common divisor of (q_0, q_1) .

Then the question remains: How long does this algorithm run for? The run time in the worst case situation should be when all of the a_i s are 1, and when $q_{k+1} = 1$. Therefore we look at solutions to the Fibonacci numbers.

$$F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}, n \ge 2$$

So how big is n compared to F_n ?

If $G(x) = \sum_{n\geq 0} F_n x^n = 1 + x + x^2 + 2x^3 + 3x^4 + 5x^5 + \dots$, then check: $G(x) = \frac{x}{1-x-x^2}$, then the roots are $\frac{1+\sqrt{5}}{2} = \varphi$ and $\frac{1-\sqrt{5}}{2}$. So $F_n is\theta(\varphi^n)$. i.e. n is $\theta(\log_{\varphi}(F_n))$.

So the Euclidean Algorithm runs in time $O(\log(q_0))$.

Example 1.2.
$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nn} \end{bmatrix} = \begin{bmatrix} \sum_{k} a_{ik} b_{kj} \end{bmatrix} \text{ takes}$$

 $\theta(n^3)$ multiplications. A faster matrix multiplication algorithm is given by the Strassen ALgorithm. Then normally for two matrices $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$ multiplying naively takes 8 multiplications (2³). But Strassen found a way to do it with 7 multiplications and more additions, which is faster. See wikipedia for more information.

Note that this also works for block matrices. Recursively we can do this on a $2^k \times 2^k$ matrix, then the number of steps is $7^k = 2^{\log_2(7)k}$. Then if n is 2^k , then this is $O(n^{\log_2 7}) \approx O(n^{2.8...})$.

In general, how much faith should we put into analysis of algorithms? Only as much as will help you optimize your programs when necessary.