1 Analysis of Algorithms

e how long your code takes to run, with "how long" referring to the
number of steps. Then the question remains: what is a step?

e look for rough bounds, depend on size of the problem but don’t depend
on what computer you have

We say f(n) is O(g(n)) if there exist constants C', N such that Vn > N,
we have f(n) < Cg(n). Or a lower bound €, then f(n) > Cg(n).

We say f(z)is 0(g(x)) if both f(x) is O(g(x)) and f(z) is Q(g(x)).

Example 1.1 (Bubble Sort Algorithm). Input: list of numbers L = [(y, ... (,].

Output: L, but sorted. Repeat the following:
for i from 0 to n-1:

if & > €i+1:
swap ¢; with f;;; in L

Until we get through L without swapping anything.

Best case scenario: L is already sorted: then we have 0 swaps and n
comparisons.

Worst case scenario: L is reverse sorted. Then this algorithm takes O(n?)
steps. Note the n — 1 in the algorithm: we have a possible optimization by
decreasing this value by 1 at each pass. Without this optimization, the n
passes take n steps each. With this optimization, however, n+(n—1)+ (n—
2) + ...+ 2+ 1steps = "2 — O(n?) steps.

In the average case number of swaps: Imagine L is n uniform random
numbers in [0, 1]. i.e. the ranking of elements of L gives a uniform 7 € S.
The average case number of swaps is E(inv(r)) = @ = O(n?). Note that
the best sorting algorithms are 6(nlogn).

The Euclidean algorithm for the greatest common divisors of two integers
has input of two numbers, qp,q; € N with ¢y > ¢;.



Then we write:

o = a1q1 + @2
q1 = G292 + g3
G2 = 0343 + qu

Qk—1 = QkQk + Qi1

qr = Qg+19k+1

SO qx.1 is the greatest common divisor of (qo, ¢1)-

Then the question remains: How long does this algorithm run for? The
run time in the worst case situation should be when all of the a;s are 1, and
when ¢x,1 = 1. Therefore we look at solutions to the Fibonacci numbers.

FOIO,Fl = 1,Fn:Fn,1+Fn,2,n2 2

So how big is n compared to F,7
If G(z) = 3,50 Fur™ = 1+ o+ 2% 4+ 22° + 32* + 52° + .., then check:

G () = 1=z, then the roots are %5 = ¢ and %5 So FisO(e™). i.e. n

is 9(log@(Fn)).
So the Euclidean Algorithm runs in time O(log(go))-

air ... Qin bll Ce bln

Example 1.2. | ¢ . N >k Qikbi; takes
Ap1 --. Qpp bnl c. bnn

0(n3) multiplications. A faster matrix multiplication algorithm is given by

the Strassen ALgorithm. Then normally for two matrices A = [CCL cbi] and

h
found a way to do it with 7 multiplications and more additions, which is
faster. See wikipedia for more information.
Note that this also works for block matrices. Recursively we can do this
on a 2F x 2% matrix, then the number of steps is 7% = 2°%2(D% Then if n is
2% then this is O(n'°&27) ~ O(n*8-).

B = [; / } multiplying naively takes 8 multiplications (2%). But Strassen

In general, how much faith should we put into analysis of algorithms?
Only as much as will help you optimize your programs when necessary.

2



