1 Analysis of Algorithms

- how long your code takes to run, with "how long" referring to the number of steps. Then the question remains: what is a step?
- look for rough bounds, depend on size of the problem but don't depend on what computer you have

We say $f(n)$ is $O(g(n))$ if there exist constants C, N such that $\forall n \geq N$, we have $f(n) \leq C g(n)$. Or a lower bound Ω, then $f(n) \geq C g(n)$.

We say $f(x)$ is $\theta(g(x))$ if both $f(x)$ is $O(g(x))$ and $f(x)$ is $\Omega(g(x))$.
Example 1.1 (Bubble Sort Algorithm). Input: list of numbers $L=\left[\ell_{0}, \ldots \ell_{n}\right]$.
Output: L, but sorted. Repeat the following:
for i from 0 to $\mathrm{n}-1$:
if $\ell_{i}>\ell_{i+1}$:
swap ℓ_{i} with ℓ_{i+1} in L
Until we get through L without swapping anything.
Best case scenario: L is already sorted: then we have 0 swaps and n comparisons.

Worst case scenario: L is reverse sorted. Then this algorithm takes $O\left(n^{2}\right)$ steps. Note the $n-1$ in the algorithm: we have a possible optimization by decreasing this value by 1 at each pass. Without this optimization, the n passes take n steps each. With this optimization, however, $n+(n-1)+(n-$ $2)+\ldots+2+1$ steps $=\frac{n(n+1)}{2}=O\left(n^{2}\right)$ steps.

In the average case number of swaps: Imagine L is n uniform random numbers in $[0,1]$. i.e. the ranking of elements of L gives a uniform $\pi \in S \pi$. The average case number of swaps is $E(\operatorname{inv}(\pi))=\frac{n(n+1)}{4}=O\left(n^{2}\right)$. Note that the best sorting algorithms are $\theta(n \log n)$.

The Euclidean algorithm for the greatest common divisors of two integers has input of two numbers, $q_{0}, q_{1} \in \mathbb{N}$ with $q_{0}>q_{1}$.

Then we write:

$$
\begin{aligned}
q_{0} & =a_{1} q_{1}+q_{2} \\
q_{1} & =a_{2} q_{2}+q_{3} \\
q_{2} & =a_{3} q_{3}+q_{4} \\
\vdots & \\
q_{k-1} & =a_{k} q_{k}+q_{k+1} \\
q_{k} & =a_{k+1} q_{k+1}
\end{aligned}
$$

So q_{k+1} is the greatest common divisor of $\left(q_{0}, q_{1}\right)$.
Then the question remains: How long does this algorithm run for? The run time in the worst case situation should be when all of the a_{i} s are 1 , and when $q_{k+1}=1$. Therefore we look at solutions to the Fibonacci numbers.

$$
F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}, n \geq 2
$$

So how big is n compared to F_{n} ?
If $G(x)=\sum_{n \geq 0} F_{n} x^{n}=1+x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+\ldots$, then check: $G(x)=\frac{x}{1-x-x^{2}}$, then the roots are $\frac{1+\sqrt{5}}{2}=\varphi$ and $\frac{1-\sqrt{5}}{2}$. So $F_{n} i s \theta\left(\varphi^{n}\right)$. i.e. n is $\theta\left(\log _{\varphi}\left(F_{n}\right)\right)$.

So the Euclidean Algorithm runs in time $O\left(\log \left(q_{0}\right)\right)$.
Example 1.2. $\left[\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{n 1} & \ldots & a_{n n}\end{array}\right]\left[\begin{array}{ccc}b_{11} & \ldots & b_{1 n} \\ \vdots & \ddots & \vdots \\ b_{n 1} & \ldots & b_{n n}\end{array}\right]=\left[\sum_{k} a_{i k} b_{k j}\right]$ takes $\theta\left(n^{3}\right)$ multiplications. A faster matrix multiplication algorithm is given by the Strassen ALgorithm. Then normally for two matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$ multiplying naively takes 8 multiplications $\left(2^{3}\right)$. But Strassen found a way to do it with 7 multiplications and more additions, which is faster. See wikipedia for more information.

Note that this also works for block matrices. Recursively we can do this on a $2^{k} \times 2^{k}$ matrix, then the number of steps is $7^{k}=2^{\log _{2}(7) k}$. Then if n is 2^{k}, then this is $O\left(n^{\log _{2} 7}\right) \approx O\left(n^{2.8 \cdots}\right)$.

In general, how much faith should we put into analysis of algorithms? Only as much as will help you optimize your programs when necessary.

