
1 Analysis of Algorithms

• how long your code takes to run, with "how long" referring to the
number of steps. Then the question remains: what is a step?

• look for rough bounds, depend on size of the problem but don't depend
on what computer you have

We say f(n) is O(g(n)) if there exist constants C, N such that ∀n ≥ N ,
we have f(n) ≤ Cg(n). Or a lower bound Ω, then f(n) ≥ Cg(n).

We say f(x) is θ(g(x)) if both f(x) is O(g(x)) and f(x) is Ω(g(x)).

Example 1.1 (Bubble Sort Algorithm). Input: list of numbers L = [`0, . . . `n].
Output: L, but sorted. Repeat the following:

for i from 0 to n-1:

if `i > `i+1:

swap `i with `i+1 in L
Until we get through L without swapping anything.
Best case scenario: L is already sorted: then we have 0 swaps and n

comparisons.
Worst case scenario: L is reverse sorted. Then this algorithm takes O(n2)

steps. Note the n − 1 in the algorithm: we have a possible optimization by
decreasing this value by 1 at each pass. Without this optimization, the n
passes take n steps each. With this optimization, however, n+(n−1)+(n−
2) + . . .+ 2 + 1 steps = n(n+1)

2
= O(n2) steps.

In the average case number of swaps: Imagine L is n uniform random
numbers in [0, 1]. i.e. the ranking of elements of L gives a uniform π ∈ Sπ.
The average case number of swaps is E(inv(π)) = n(n+1)

4
= O(n2). Note that

the best sorting algorithms are θ(n log n).

The Euclidean algorithm for the greatest common divisors of two integers
has input of two numbers, q0, q1 ∈ N with q0 > q1.

1



Then we write:

q0 = a1q1 + q2

q1 = a2q2 + q3

q2 = a3q3 + q4
...

qk−1 = akqk + qk+1

qk = ak+1qk+1

So qk+1 is the greatest common divisor of (q0, q1).
Then the question remains: How long does this algorithm run for? The

run time in the worst case situation should be when all of the ais are 1, and
when qk+1 = 1. Therefore we look at solutions to the Fibonacci numbers.

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2

So how big is n compared to Fn?
If G(x) =

∑
n≥0 Fnx

n = 1 + x + x2 + 2x3 + 3x4 + 5x5 + . . ., then check:

G(x) = x
1−x−x2 , then the roots are 1+

√
5

2
= ϕ and 1−

√
5

2
. So Fnisθ(ϕ

n). i.e. n
is θ(logϕ(Fn)).

So the Euclidean Algorithm runs in time O(log(q0)).

Example 1.2.

a11 . . . a1n
...

. . .
...

an1 . . . ann


b11 . . . b1n

...
. . .

...
bn1 . . . bnn

 =

 ∑
k aikbkj

 takes

θ(n3) multiplications. A faster matrix multiplication algorithm is given by

the Strassen ALgorithm. Then normally for two matrices A =

[
a b
c d

]
and

B =

[
e f
g h

]
multiplying naively takes 8 multiplications (23). But Strassen

found a way to do it with 7 multiplications and more additions, which is
faster. See wikipedia for more information.

Note that this also works for block matrices. Recursively we can do this
on a 2k × 2k matrix, then the number of steps is 7k = 2log2(7)k. Then if n is
2k, then this is O(nlog2 7) ≈ O(n2.8...).

In general, how much faith should we put into analysis of algorithms?
Only as much as will help you optimize your programs when necessary.

2


