
FRIDAY WEEK 2 NOTES

1. Binary Search

Input:
L - a sorted list of numbers
x - the number we’re looking for
a - place in L to start looking
b - place in L to stop looking

Output:
true or false - is x in the list between a and b or not

Some code for binary search:

def Find(L,x,a,b):
let c = ba+b

2
c

if a == b:
return (L(a) == x)

else:
if L[c] < x :

return Find(L,x,c,b)
else:

return Find(L,x,a,c)

Let’s analyze how long this takes to run:
Let T (n) = worst-case running time on list of length n
Claim. T (n) = max

(
T (bn

2
c), T (dn

2
e)
)
+ C

Claim. T is increasing, so T (n) = T (dn
2
e) + C

If n = 2k,

T (2k) = T (2k−1) + C

= T (2k−2 + 2C

...

= T (1) + kC

We learn T (n) ≤ Clog2n (assuming T is increasing), i.e. T (n) = O(logn).

Date: October 11, 2019.
1

2 FRIDAY WEEK 2 NOTES

2. Memoization

If you have something like:

def F(a,b,c):
do some things
return answer

and you would like this to run faster the next time you call it, you can do:

memoize = {}
def F(a,b,c):

if (a,b,c) not in memoize:
do some things
memoize[(a,b,c)] = answer

return memoize[(a,b,c)]

note that (a,b,c) have to be things you can put in a dictionary

Example. Up-Right lattice points from (0, 0) to (a, b)

Let n(a, b) be the number of U-R paths from (0, 0 to (a, b)

It’s clear that

n(a, b) =

{
1 if a = 0 or b = 0

n(a− 1, b) + n(a, b− 1)

You have some options:
- could memoize
- could compute these for (a, b) in increasing lex order
- answer really though is

(
a+b
b

)
, could do math

3. Graph Theory

• A graph G = (V,E) has a set V of vertices and E ⊆ (V × V) of edges.
• We say G is simple if (v, v) /∈ E for every v ∈ V (i.e. no loops of vertex to itself).
• We say G is directed if E is a set of ordered pairs (a, b).
• We say G is undirected if E is a set of unordered pairs {a, b}.
• A walk from a ∈ V to b ∈ V is a sequence of edges

(a1, a1), (a1, a2), ..., (ak−1, ak), (ak, b)

FRIDAY WEEK 2 NOTES 3

in E.
• A connected graph has a walk from a to b for all a, b ∈ V .
• A path from a to b is a walk with no repeated vertex.
• A cycle is a walk from a ∈ V to a of length ≥ 3 with no repeated vertices except for
endpoints.
• A tree is a connected graph with no cycles.

Claim. If T = (V,E) is a tree, then |V | = |E|+ 1.

