FRIDAY WEEK 2 NOTES

1. BINARY SEARCH

Input:

L - a sorted list of numbers

 \boldsymbol{x} - the number we're looking for

a - place in L to start looking

b - place in L to stop looking

Output:

true or false - is x in the list between a and b or not

Some code for binary search:

def Find(L,x,a,b): let $c = \lfloor \frac{a+b}{2} \rfloor$ if a == b: return (L(a) == x)else: if L[c] < x: return Find(L,x,c,b) else: return Find(L,x,a,c)

Let's analyze how long this takes to run: Let T(n) = worst-case running time on list of length n <u>Claim.</u> $T(n) = max\left(T(\lfloor \frac{n}{2} \rfloor), T(\lceil \frac{n}{2} \rceil)\right) + C$

<u>Claim.</u> T is increasing, so $T(n) = T(\lceil \frac{n}{2} \rceil) + C$ If $n = 2^k$, $T(2^k) = T(2^{k-1}) + C$ $= T(2^{k-2} + 2C)$... = T(1) + kC

We learn $T(n) \leq Clog_2 n$ (assuming T is increasing), i.e. T(n) = O(logn).

Date: October 11, 2019.

2. Memoization

If you have something like:

def F(a,b,c): do some things return answer

and you would like this to run faster the next time you call it, you can do:

```
memoize = {}
def F(a,b,c):
    if (a,b,c) not in memoize:
        do some things
        memoize[(a,b,c)] = answer
    return memoize[(a,b,c)]
```

note that (a,b,c) have to be things you can put in a dictionary

Example. Up-Right lattice points from (0,0) to (a,b)

Let n(a, b) be the number of U-R paths from (0, 0 to (a, b))

It's clear that

$$n(a,b) = \begin{cases} 1 & \text{if } a = 0 \text{ or } b = 0\\ n(a-1,b) + n(a,b-1) \end{cases}$$

You have some options:

- could memoize
- could compute these for (a, b) in increasing lex order
- answer really though is $\binom{a+b}{b}$, could do math

3. Graph Theory

- A graph G = (V, E) has a set V of vertices and $E \subseteq (V \times V)$ of edges.
- We say G is simple if $(v, v) \notin E$ for every $v \in V$ (i.e. no loops of vertex to itself).
- We say G is <u>directed</u> if E is a set of ordered pairs (a, b).
- We say G is <u>undirected</u> if E is a set of unordered pairs $\{a, b\}$.
- A walk from $a \in V$ to $b \in V$ is a sequence of edges

 $(a_1, a_1), (a_1, a_2), \dots, (a_{k-1}, a_k), (a_k, b)$

in E.

- A <u>connected</u> graph has a walk from a to b for all $a, b \in V$.
- A path from a to b is a walk with no repeated vertex.
- A <u>cycle</u> is a walk from $a \in V$ to a of length ≥ 3 with no repeated vertices except for endpoints.
- A <u>tree</u> is a connected graph with no cycles.

<u>Claim.</u> If T = (V, E) is a tree, then |V| = |E| + 1.