
Combinatorics and Computation Notes

Marissa Masden

10/16/2019

1 Wilson's Algorithm

The fastest known algorithm to generate a spanning tree uniformly from all
spanning trees of a given graph G is Wilson's Algorithm, which is given by the
following general steps:

Wilson's Algorithm:

1. Pick a root vertex r, not necessarily uniformly from G, and set
T0 = {r}.

2. Repeat the following:

(a) Select a random vertex vi uniformly from vertices not in Ti.

(b) Perform a loop-erased random walk (LERW) in G until we
�nd a path Pi whose �rst vertex is vi and whose last vertex
is in Ti.

(c) Set Ti+1 = Ti ∪ Pi.

(d) Do until the vertices of Tk span the vertices of G.

While we have not yet de�ned a loop-erased random walk, it should be clear
that this process generates a spanning tree of G. What is not clear is that this
spanning tree should be uniform, which we must prove. We begin by more pre-
cisely de�ning a loop-erased random walk:

A loop-erased random walk in G starting at v is a walk
(v0, v1, v2, ..., vk, ...) with �rst vertex v0 = v which is generated by the
following steps:

1. Choose vk uniformly from the neighbors of vk−1 and add it to the
end of the walk.

2. If vk is a vertex which is already in the walk as some vj for j < k,
delete the vertices vj+1, ..., vk from the walk, and resample the
walk, starting at sampling for vi+1.

1



Recall that in a �nite connected graph the expected hitting time of every
vertex is �nite when following a random walk (in fact, random walks on �nite
graphs are positive recurrent). As a loop-erased random walk can be generated
by removing subwalks from any standard random walk, this algorithm will ter-
minate in �nite time with probability 1, with total running time dependent on
the maximum expected hitting time of any vertex in the graph, which we will
not discuss here.

Claim: Wilson's algorithm selects a spanning tree uniformly from all span-
ning trees of G.

Proof: Consider placing a stack of in�nitely many �cards� on each vertex of
G except the root. We �color� the ith card of each stack by color i. Let each card
also have a neighboring vertex on it, chosen uniformly and independently from
the neighbors of that stack's vertex. Think about each card as recording what
layer it is in, and providing an edge between that vertex and one of its neighbors.

If the top cards on each stack de�ne a tree in this manner, then we are done.

Otherwise, there are some cycles. Consider the algorithm given as follows:

1. Select a cycle C given by some of the cards on the top of the
stacks.

2. Pop the cycle C by removing the cards corresponding to edges in
C from the top of their stacks.

3. Repeat until there are no cycles.

This algorithm is equivalent to Wilson's algorithm: Wilson's algorithm ran-
domly �nds cycles to pop and pops them. However, we still must verify that
this new algorithm generates spanning trees uniformly. In particular, if we want
this to work we need it to be irrelevant which cycle we choose to pop �rst.

Lemma: The resulting tree is independent of the order in which cycles are
popped.

Proof of Lemma: Note each colored cycle is only popped once, even if a
given cycle could be popped multiple times. Consider a colored cycle C which
is popped when it is color k. That is, we have popped the following cycles in
order:

C1, C2, ..., Ck = C

Suppose that the cycle C̃ was popped instead of C1. Can C still be popped?
We will see that it can be - we will construct a sequence of cycles which can be

2



popped leading us to C.

We consider two cases. In the easy case, C̃ is disjoint from C1, ..., Ck. In
that case, we may pop the cycles in this order: C̃, C1, ..., Ck.

In the harder case, suppose that C̃ is not disjoint from C1, ..., Ck. Let Ci be
the �rst cycle with a common vertex with C̃. We will see that C̃ = Ci. In fact,
if not, there is some vertex w with di�erent successors in the two cycles.

Since by our assumption w is not in C1, ..., Ci−1, then in fact its card has
not yet been removed: it is the same color in C̃ and Ci. This is a contradiction:
w's card must tell us to go to the same place in each cycle, and cannot have
di�erent successors in Ci and C̃.

Therefore, C̃ = Ci and furthermore Ci is disjoint from C1, ..., Ci−1, so we
may choose to pop it �rst. The following order permits us to still choose to pop
C = Ck:

C̃, C1, ..., Ci−1, Ci+1, ..., Ck

Therefore, our lemma is proven. Lastly, we wish to see that the cycle-popping
algorithm gives us trees uniformly. However, that was not discussed in this class
period.

3


