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October 18 (Friday of Week 3)

At the beginning of class, we reviewed Wilson’s algorithm from the previous lecture but
didn’t add any new information. To summarize: suppose G = (V,E) is a graph from which
we want to pick a spanning tree uniformly at random. We can do this using Wilson’s
algorithm, which says

• Randomly pick a root vertex r from the set of vertices and set T0 = {r}.

• For incrementing i, repeat the following:

– Pick a uniformly random vertex vi not in Ti

– Perform a loop-erased random walk in G until we get a path Pi from vi to Ti

– Set Ti+1 = Ti ∪ Pi

• Continue until Tk spans G.

Equivalently, we can think of Wilson’s algorithm in the following way:

• On each vertex v ∈ V except for a randomly chosen root vertex, place a stack of cards
where each card has a uniformly random neighbor of v written on it, and the ith card
in each stack has color i. The cards are independent of one another.

• If the top cards on the stacks form a cycle v1, v2, . . . , vt = v1, remove the top card on
each vertex in the cycle. Regardless of the order in which we remove the cycles, the
same cycles are removed. Repeat until there are no cycles.

• If there are infinitely many cycles to be removed, this procedure never finishes. How-
ever, this is a probability 0 event, and the expected running time of the algorithm is
finite.

• If the number of cycles to be removed is a finite integer k, then the cycles C1, . . . , Ck

come out in some order, leaving a uniformly random tree T . Wilson’s algorithm “dis-
covers” T by performing a loop-erased random walk.

Adjacency Matrices of Graphs

Let G be an undirected graph with no loops and no multiple edges, with n vertices v1, . . . , vn.

Definition. The adjacency matrix for the graph G is the matrix A = [aij]i,j where{
1 if vi is adjacent to vj

0 otherwise

An eigenvalue/eigenvector of the graph G is an eigenvalue/eigenvector of its adjacency
matrix A.

Since A is real and symmetric,
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• The eigenvalues of A are real

• A gives an orthogonal eigenbasis

• A is diagonalizable over C.

When we square the matrix A, we get

A2 =
[∑

` ai`a`j
]
i,j

=
[
# walks vi → ?→ vj

]
i,j
.

The trace of an n×n matrix M is defined as the sum of its diagonal entries, and is equal to
the sum of its eigenvalues counted with multiplicity. That is,

tr(M) =
∑

1≤i≤n

aii =
∑
i

λi.

If x is a formal variable, then

tr(1− xA)−1 = tr(1 + xA+ x2A2 + . . . )

is the generating function for the number of closed walks (walks which start and end at the
same vertex) rooted at vertex i, with x marking the length of the walk.

We can find the eigenvalues of the adjacency matrix A using the power method:

• Since A is symmetric, we can write A = PDP−1, where D is the diagonal matrix of
eigenvalues of A, and P is the matrix of eigenvectors for A where the ith column of P
corresponds to the (i, i)-entry of D. Assume the largest eigenvalue has multiplicity 1
and |λ1| > |λ2| ≥ · · · ≥ |λn|.

• Then

Ak = P

λ
k
1

. . .

λkn

P−1. (1)

For large k, λk1 dominates all other entries in the diagonal matrix.

• Given any vector v in Cn, you can express v in the eigenbasis. Applying (1), Akv is
approximately an eigenvector for λ1 when k is large. In practice, to find the eigenvector
corresponding to the largest eigenvalue of A, we can repeatedly set

vi =
Avi−1

|Avi−1|
,

starting with an arbitrary nonzero vector v0. As i increases, vi gets closer and closer
to being an eigenvector corresponding to λ1.
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