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Today we’re going to talk more about branching processes. For setup, we have a collection
of independent, identically distributed random variables, which we generically denote X.
Each random variable is the number of offspring that each parent has. The generating
function φ(u) is given by

φ(u) = E[uX ] =
∑
n≥0

unpn,

where pn = P{X = n} is the probability that a parent has n children. (As the X are
identically distributed, this probability does not depend on the parent.) We can think of
this generating function as a map φ : [0, 1]→ [0, 1]. For example, φ(0) = p0, while

φ′(1) = µ = E[X] =
∑
n

npn,

where µ is the mean (or expectation) of the distribution used for the family X.

Theorem. If µ > 1, then there is a fixed point of φ, perhaps 1− q for some 0 < q ≤ 1. That
is, φ(1− q) = 1− q. Furthermore, q is the survival probability of the branching process,

q = P{Survival of BP} = P
{

lim
t→∞

Nt > 0
}
.

Conversely, if µ ≤ 1, then
P{Nt → 0} = 1.

Proof. We define

1− qt = P {Nt > 0} = φ(t)(0) = φ(φ(. . . φ(0) . . .)).

We note that φ(u)↗ as u↗. So if u < 1− q then u < φ(u) < 1− q.

Example. Suppose that X has the Poisson distribution with mean λ. This means that

P{X = n} = e−λ
λn

n!
.
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Then

φ(u) =
∑
n≥0

une−λ
λn

n!
= e−λe−λu = exp(λ(u− 1)),

and we note that E[X] = φ′(1) = λ, which is why λ is referred to as the mean of this
distribution.

Approximating the Survival Probability. Suppose that µ = 1+s for some small-ish
s. Then we can build a Taylor series around x = 0 for φ(1− x);

φ(1− x) = φ(1)− xφ′(1) +
x2

2
φ′′(1)− . . . .

here we see that φ′′(1) = E[X(X−1)] is almost the variance. We call this quantity m. Using
the quadratic approximation of this Taylor series, we see that

φ(1− x) ≈ 1− µx+
m

2
x2.

Since 1−q is a fixed point of φ, q will (approximately) be a solution to the quatratic equation

1− x = 1− µx+
m

2
x2.

Since this equation is solved by x = 2s/m, we see that q ≈ 2s/m is a nice approximation
for the survival probability when s is small. When s is larger, this Taylor expansion doesn’t
converge very fast, so the quadratic approximation won’t be the best.

Example. Each virus particle that goes in your mouth might die or reproduce. Suppose that
P{death} = 99%, and

E[ # offspring | not death ] = 150.

Question: What is the probability, approximately, that you get sick from a single particle,
i.e., that the number of viruses ↗∞?

We note that µ = 150·0.1 = 1.5 > 1, so s = 0.5. To calculate m, we use m = E[X(X−1)].
This is 0 with 99% probability, and ≈ 1502 with probability 1%. So we see that

q ≈ 2s

m
≈ 2(0.5)

0.01(1502)
≈ 1%.

Random Graphs. For an undirected graph with N nodes, let d
(N)
n , be the proportion

of nodes with degree n, and let D(N) be a random variable giving the degree of a uniformly
randomly chosen node in the graph. d

(N)
n is called the degree sequence. We note that

P{D(N) = n} = d
(N)
n .

Definition. A sequence of graphs is called sparse if D(N) converges in distribution as N →
∞, perhaps to a random variable D. In this case, convergence in distribution means that
d
(N)
n converges for each n as N → ∞ to a possible degree sequence, that is, it converges to

some dn with
∑
dn = 1.
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Example. A branching provess with µ > 1, run until it has N nodes.

Example. Z2 ∩ [0,
√
n]2. Then as N →∞, d

(N)
i → 0 for i 6= 4 while d

(N)
4 → 1.

Non-Example. Connect u, v ∈ {1, 2, . . . , n} if u|v or v|u. This is not sparse as P{D(n) >
x} → 1 as N →∞ for all x.

Theorem (”Your friends have more friends than you do.”). Assume that d0 = 0. Let U be
a uniformly chosen node and V a uniformly chosen neighbor of U . Then

E[deg(V )] > E[deg(U)].

Proof. The probability that the edge (U, V ) is chosen is given by

P{ pick edge (U, V ) } =
1

N

1

deg(U)
.

for any edge (U, V ). We note that

E[deg(U)] =
∑

(U,V )∈E

deg(U)
1

N

1

deg(U)
=

2|E|
N

,

which is the average degree. Furthermore,

E[deg(V )] =
∑

(U,V )∈E

deg(V )
1

N

1

deg(U)
.

To evaluate this, we note that one has the fundamental inequality

1

2

(
x

y
+
y

x

)
≥ 1,

which holds for every x, y > 0. So

E[deg(U)] =
∑
U,V

1

N
≤
∑
U,V

1

N

(
deg(U)

deg(V )
+

deg(U)

deg(V )

)
1

2
= E[deg(V )].
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