# MATH 607 (Applied Math I) Lecture Notes 

Christophe Dethier

October 23, 2019

Please send Peter the $\mathrm{AT}_{\mathrm{E}} \mathrm{Xnotes}$ to plr@uoregon.edu and tell him if you don't want to be credited. Make sure to send the .tex file as well as the .pdf file.

Today we're going to talk more about branching processes. For setup, we have a collection of independent, identically distributed random variables, which we generically denote $X$. Each random variable is the number of offspring that each parent has. The generating function $\phi(u)$ is given by

$$
\phi(u)=\mathbb{E}\left[u^{X}\right]=\sum_{n \geq 0} u^{n} p_{n},
$$

where $p_{n}=\mathbb{P}\{X=n\}$ is the probability that a parent has $n$ children. (As the $X$ are identically distributed, this probability does not depend on the parent.) We can think of this generating function as a map $\phi:[0,1] \rightarrow[0,1]$. For example, $\phi(0)=p_{0}$, while

$$
\phi^{\prime}(1)=\mu=\mathbb{E}[X]=\sum_{n} n p_{n}
$$

where $\mu$ is the mean (or expectation) of the distribution used for the family $X$.
Theorem. If $\mu>1$, then there is a fixed point of $\phi$, perhaps $1-q$ for some $0<q \leq 1$. That is, $\phi(1-q)=1-q$. Furthermore, $q$ is the survival probability of the branching process,

$$
q=\mathbb{P}\{\text { Survival of } B P\}=\mathbb{P}\left\{\lim _{t \rightarrow \infty} N_{t}>0\right\} .
$$

Conversely, if $\mu \leq 1$, then

$$
\mathbb{P}\left\{N_{t} \rightarrow 0\right\}=1
$$

Proof. We define

$$
1-q_{t}=\mathbb{P}\left\{N_{t}>0\right\}=\phi^{(t)}(0)=\phi(\phi(\ldots \phi(0) \ldots)) .
$$

We note that $\phi(u) \nearrow$ as $u \nearrow$. So if $u<1-q$ then $u<\phi(u)<1-q$.
Example. Suppose that $X$ has the Poisson distribution with mean $\lambda$. This means that

$$
\mathbb{P}\{X=n\}=e^{-\lambda} \frac{\lambda^{n}}{n!} .
$$

Then

$$
\phi(u)=\sum_{n \geq 0} u^{n} e^{-\lambda} \frac{\lambda^{n}}{n!}=e^{-\lambda} e^{-\lambda u}=\exp (\lambda(u-1))
$$

and we note that $\mathbb{E}[X]=\phi^{\prime}(1)=\lambda$, which is why $\lambda$ is referred to as the mean of this distribution.

Approximating the Survival Probability. Suppose that $\mu=1+s$ for some small-ish $s$. Then we can build a Taylor series around $x=0$ for $\phi(1-x)$;

$$
\phi(1-x)=\phi(1)-x \phi^{\prime}(1)+\frac{x^{2}}{2} \phi^{\prime \prime}(1)-\ldots
$$

here we see that $\phi^{\prime \prime}(1)=\mathbb{E}[X(X-1)]$ is almost the variance. We call this quantity $m$. Using the quadratic approximation of this Taylor series, we see that

$$
\phi(1-x) \approx 1-\mu x+\frac{m}{2} x^{2} .
$$

Since $1-q$ is a fixed point of $\phi, q$ will (approximately) be a solution to the quatratic equation

$$
1-x=1-\mu x+\frac{m}{2} x^{2}
$$

Since this equation is solved by $x=2 s / m$, we see that $q \approx 2 s / m$ is a nice approximation for the survival probability when $s$ is small. When $s$ is larger, this Taylor expansion doesn't converge very fast, so the quadratic approximation won't be the best.

Example. Each virus particle that goes in your mouth might die or reproduce. Suppose that $\mathbb{P}\{$ death $\}=99 \%$, and

$$
\mathbb{E}[\# \text { offspring } \mid \text { not death }]=150 .
$$

Question: What is the probability, approximately, that you get sick from a single particle, i.e., that the number of viruses $\nearrow \infty$ ?

We note that $\mu=150 \cdot 0.1=1.5>1$, so $s=0.5$. To calculate $m$, we use $m=\mathbb{E}[X(X-1)]$. This is 0 with $99 \%$ probability, and $\approx 150^{2}$ with probability $1 \%$. So we see that

$$
q \approx \frac{2 s}{m} \approx \frac{2(0.5)}{0.01\left(150^{2}\right)} \approx 1 \%
$$

Random Graphs. For an undirected graph with $N$ nodes, let $d_{n}^{(N)}$, be the proportion of nodes with degree $n$, and let $D^{(N)}$ be a random variable giving the degree of a uniformly randomly chosen node in the graph. $d_{n}^{(N)}$ is called the degree sequence. We note that $\mathbb{P}\left\{D^{(N)}=n\right\}=d_{n}^{(N)}$.

Definition. A sequence of graphs is called sparse if $D^{(N)}$ converges in distribution as $N \rightarrow$ $\infty$, perhaps to a random variable $D$. In this case, convergence in distribution means that $d_{n}^{(N)}$ converges for each $n$ as $N \rightarrow \infty$ to a possible degree sequence, that is, it converges to some $d_{n}$ with $\sum d_{n}=1$.

Example. A branching provess with $\mu>1$, run until it has $N$ nodes.
Example. $\mathbb{Z}^{2} \cap[0, \sqrt{n}]^{2}$. Then as $N \rightarrow \infty, d_{i}^{(N)} \rightarrow 0$ for $i \neq 4$ while $d_{4}^{(N)} \rightarrow 1$.
Non-Example. Connect $u, v \in\{1,2, \ldots, n\}$ if $u \mid v$ or $v \mid u$. This is not sparse as $\mathbb{P}\left\{D^{(n)}>\right.$ $x\} \rightarrow 1$ as $N \rightarrow \infty$ for all $x$.

Theorem ("Your friends have more friends than you do."). Assume that $d_{0}=0$. Let $U$ be a uniformly chosen node and $V$ a uniformly chosen neighbor of $U$. Then

$$
\mathbb{E}[\operatorname{deg}(V)]>\mathbb{E}[\operatorname{deg}(U)] .
$$

Proof. The probability that the edge $(U, V)$ is chosen is given by

$$
\mathbb{P}\{\text { pick edge }(U, V)\}=\frac{1}{N} \frac{1}{\operatorname{deg}(U)} .
$$

for any edge $(U, V)$. We note that

$$
\mathbb{E}[\operatorname{deg}(U)]=\sum_{(U, V) \in E} \operatorname{deg}(U) \frac{1}{N} \frac{1}{\operatorname{deg}(U)}=\frac{2|E|}{N}
$$

which is the average degree. Furthermore,

$$
\mathbb{E}[\operatorname{deg}(V)]=\sum_{(U, V) \in E} \operatorname{deg}(V) \frac{1}{N} \frac{1}{\operatorname{deg}(U)}
$$

To evaluate this, we note that one has the fundamental inequality

$$
\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right) \geq 1
$$

which holds for every $x, y>0$. So

$$
\mathbb{E}[\operatorname{deg}(U)]=\sum_{U, V} \frac{1}{N} \leq \sum_{U, V} \frac{1}{N}\left(\frac{\operatorname{deg}(U)}{\operatorname{deg}(V)}+\frac{\operatorname{deg}(U)}{\operatorname{deg}(V)}\right) \frac{1}{2}=\mathbb{E}[\operatorname{deg}(V)]
$$

