MATH 607 (Applied Math I) Lecture Notes

Christophe Dethier

October 23, 2019

Please send Peter the IAT_EX notes to plr@uoregon.edu and tell him if you *don't* want to be credited. Make sure to send the .tex file as well as the .pdf file.

Today we're going to talk more about branching processes. For setup, we have a collection of independent, identically distributed random variables, which we generically denote X. Each random variable is the number of offspring that each parent has. The generating function $\phi(u)$ is given by

$$\phi(u) = \mathbb{E}[u^X] = \sum_{n \ge 0} u^n p_n,$$

where $p_n = \mathbb{P}\{X = n\}$ is the probability that a parent has *n* children. (As the X are identically distributed, this probability does not depend on the parent.) We can think of this generating function as a map $\phi : [0, 1] \to [0, 1]$. For example, $\phi(0) = p_0$, while

$$\phi'(1) = \mu = \mathbb{E}[X] = \sum_{n} n p_n,$$

where μ is the mean (or expectation) of the distribution used for the family X.

Theorem. If $\mu > 1$, then there is a fixed point of ϕ , perhaps 1 - q for some $0 < q \le 1$. That is, $\phi(1 - q) = 1 - q$. Furthermore, q is the survival probability of the branching process,

$$q = \mathbb{P}\{Survival \text{ of } BP\} = \mathbb{P}\left\{\lim_{t \to \infty} N_t > 0\right\}.$$

Conversely, if $\mu \leq 1$, then

$$\mathbb{P}\{N_t \to 0\} = 1.$$

Proof. We define

$$1 - q_t = \mathbb{P}\{N_t > 0\} = \phi^{(t)}(0) = \phi(\phi(\dots,\phi(0)\dots)).$$

We note that $\phi(u) \nearrow$ as $u \nearrow$. So if u < 1 - q then $u < \phi(u) < 1 - q$.

Example. Suppose that X has the Poisson distribution with mean λ . This means that

$$\mathbb{P}\{X=n\} = e^{-\lambda} \frac{\lambda^n}{n!}.$$

Then

$$\phi(u) = \sum_{n \ge 0} u^n e^{-\lambda} \frac{\lambda^n}{n!} = e^{-\lambda} e^{-\lambda u} = \exp(\lambda(u-1)),$$

and we note that $\mathbb{E}[X] = \phi'(1) = \lambda$, which is why λ is referred to as the mean of this distribution.

Approximating the Survival Probability. Suppose that $\mu = 1 + s$ for some small-ish s. Then we can build a Taylor series around x = 0 for $\phi(1 - x)$;

$$\phi(1-x) = \phi(1) - x\phi'(1) + \frac{x^2}{2}\phi''(1) - \dots$$

here we see that $\phi''(1) = \mathbb{E}[X(X-1)]$ is almost the variance. We call this quantity m. Using the quadratic approximation of this Taylor series, we see that

$$\phi(1-x) \approx 1 - \mu x + \frac{m}{2}x^2.$$

Since 1-q is a fixed point of ϕ , q will (approximately) be a solution to the quatratic equation

$$1 - x = 1 - \mu x + \frac{m}{2}x^2.$$

Since this equation is solved by x = 2s/m, we see that $q \approx 2s/m$ is a nice approximation for the survival probability when s is small. When s is larger, this Taylor expansion doesn't converge very fast, so the quadratic approximation won't be the best.

Example. Each virus particle that goes in your mouth might die or reproduce. Suppose that $\mathbb{P}\{\text{death}\} = 99\%$, and

 $\mathbb{E}[\# offspring \mid not \ death] = 150.$

Question: What is the probability, approximately, that you get sick from a single particle, i.e., that the number of viruses $\nearrow \infty$?

We note that $\mu = 150 \cdot 0.1 = 1.5 > 1$, so s = 0.5. To calculate m, we use $m = \mathbb{E}[X(X-1)]$. This is 0 with 99% probability, and $\approx 150^2$ with probability 1%. So we see that

$$q \approx \frac{2s}{m} \approx \frac{2(0.5)}{0.01(150^2)} \approx 1\%$$

Random Graphs. For an undirected graph with N nodes, let $d_n^{(N)}$, be the proportion of nodes with degree n, and let $D^{(N)}$ be a random variable giving the degree of a uniformly randomly chosen node in the graph. $d_n^{(N)}$ is called the degree sequence. We note that $\mathbb{P}\{D^{(N)} = n\} = d_n^{(N)}$.

Definition. A sequence of graphs is called sparse if $D^{(N)}$ converges in distribution as $N \to \infty$, perhaps to a random variable D. In this case, convergence in distribution means that $d_n^{(N)}$ converges for each n as $N \to \infty$ to a possible degree sequence, that is, it converges to some d_n with $\sum d_n = 1$.

Example. A branching provess with $\mu > 1$, run until it has N nodes.

Example. $\mathbb{Z}^2 \cap [0, \sqrt{n}]^2$. Then as $N \to \infty$, $d_i^{(N)} \to 0$ for $i \neq 4$ while $d_4^{(N)} \to 1$.

Non-Example. Connect $u, v \in \{1, 2, ..., n\}$ if u|v or v|u. This is not sparse as $\mathbb{P}\{D^{(n)} > x\} \to 1$ as $N \to \infty$ for all x.

Theorem ("Your friends have more friends than you do."). Assume that $d_0 = 0$. Let U be a uniformly chosen node and V a uniformly chosen neighbor of U. Then

 $\mathbb{E}[\deg(V)] > \mathbb{E}[\deg(U)].$

Proof. The probability that the edge (U, V) is chosen is given by

$$\mathbb{P}\{ \text{ pick edge } (U, V) \} = \frac{1}{N} \frac{1}{\deg(U)}$$

for any edge (U, V). We note that

$$\mathbb{E}[\deg(U)] = \sum_{(U,V)\in E} \deg(U) \frac{1}{N} \frac{1}{\deg(U)} = \frac{2|E|}{N},$$

which is the average degree. Furthermore,

$$\mathbb{E}[\deg(V)] = \sum_{(U,V)\in E} \deg(V) \frac{1}{N} \frac{1}{\deg(U)}.$$

To evaluate this, we note that one has the fundamental inequality

$$\frac{1}{2}\left(\frac{x}{y} + \frac{y}{x}\right) \ge 1,$$

which holds for every x, y > 0. So

$$\mathbb{E}[\deg(U)] = \sum_{U,V} \frac{1}{N} \le \sum_{U,V} \frac{1}{N} \left(\frac{\deg(U)}{\deg(V)} + \frac{\deg(U)}{\deg(V)} \right) \frac{1}{2} = \mathbb{E}[\deg(V)].$$