Applied Notes

November 6th, 2019

Example: Let K_{n} be the complete graph on n vertices. Then the number of spanning trees of K_{n} is det Δ_{i}^{i} for any i. If we choose $i=n$, we have

$$
\operatorname{det} \Delta_{i}^{i}=\operatorname{det}\left[\begin{array}{cccc}
n-1 & -1 & \cdots & -1 \\
-1 & n-1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & n-1
\end{array}\right]
$$

Subtracting row 1 from each other row,

$$
\operatorname{det} \Delta_{i}^{i}=\operatorname{det}\left[\begin{array}{ccccc}
n-1 & -1 & -1 & \cdots & -1 \\
-n & n & 0 & \cdots & 0 \\
-n & 0 & n & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-n & 0 & 0 & \cdots & n
\end{array}\right]
$$

Now adding every column except column 1 to column 1,

$$
\operatorname{det} \Delta_{i}^{i}=\operatorname{det}\left[\begin{array}{ccccc}
1 & -1 & -1 & \cdots & -1 \\
0 & n & 0 & \cdots & 0 \\
0 & 0 & n & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & n
\end{array}\right]
$$

By a theorem from Cauchy, this determinant is equal to n^{n-2}, so there are n^{n-2} spanning trees of K_{n}.

Definition 0.1: Let G be an undirected graph and let $e=\left(e_{0}, e_{1}\right)$ and $f=\left(f_{0}, f_{1}\right)$ be arbitrarily oriented edges in G. Let $\overleftarrow{f}=\left(f_{1}, f_{0}\right) . J^{e}(f)=\mathbb{E}$ (\# times f is used in a random walk from e_{0} to $\left.e_{1}\right)=\mathbb{E}(\#$ times \overleftarrow{f} is used $)$. $\beta(e, f)=\mathbb{P}\left(\right.$ the path from e_{0} to e_{1} in a uniformly random spanning tree of G uses f).

Theorem 0.2: $\beta(e, f)-\beta(e, \overleftarrow{f})=J^{e}(f)$

Proof: $\beta(e, f)-\beta(e, \overleftarrow{f})$ is the expected number of times a loop-erased random walk from e_{0} from e_{1} uses f, minus the amount of times it uses \overleftarrow{f}. This is because a loop-erased random walk either uses f once or not at all, so the probability is the same as the expectation. But in the non-loop-erased walk, the probability of walking through f forwards is the same as the probability of walking through it backwards, so the expected number of times f is used inside of a loop is the same as the expected number of times that \overleftarrow{f} is. Thus $\beta(e, f)-\beta(e, \overleftarrow{f})$ is the expected number of times f is used outside of a loop in a random walk from e_{0} to e_{1}, minus the expected number of times \overleftarrow{f} is used. But this is exactly $J^{e}(f)$

Comment: J^{e} describes the current flowing through a graph G when a 1 V battery is placed on edge e and 1Ω resistors are placed on every edge.

