Combinatorics and Computation Notes

Marissa Masden

11/8/2019

1 The Perfect Matching Problem: Dimer Model

We will discuss the perfect matching problem on connected, planar, bipartite
graphs. To begin, we must understand what each of these terms mean.

1.1 Planar Graphs

A graph G is called planar if, intuitively, G can be drawn in the plane
so that no two of its edges cross. More formally, there is an embedding
of G, as a simplicial complex, in the plane.

Note, in particular, that K, the complete graph on 4 vertices, is planar, even
though the immediate way one might draw K, does not immediately appear
planar:

Figure 1: K4, and two planar embeddings.

For a fixed embedding of a planar graph, the graph partitions the plane
into several open regions: one infinite region and many finite regions. These
regions are called faces, for a reason that may become more obvious below. As
seen in the previous example, the number of “sides” or “edges” of different faces
may differ based on the choice of embedding of G. However, we do observe the

following relationship which applies to any embedding of G, which should be
familiar:

Euler Characteristic of a Planar Graph

For any embedding of a planar graph G = (V, E) which divides the
plane into |F| faces,
VI —|E| + |F| =2

Euler originally proved this relationship for faces, vertices, and edges of
polyhedra whose surfaces are topologically equivalent to the sphere S2. We can
understand why this same relationship appears for planar graphs by compacti-
fying the single infinite face, creating an embedding of the graph in the sphere
S2. Alternately, the relationship may be proven by induction on |V| + |E].

1.2 Bipartite Graphs

Bipartite Graph

A graph G = (V, E) is called bipartite if we may write V =V, UV,
(think Viypite U Viiaer) so that if (u,v) € E, then either:

1. ueV,and v € Vg, or
2. veV,and ueV,

Equivalently, G is 2-colorable.

For example, any even cycle graph is bipartite (two-colorable), whereas any
odd cycle graph is not:

Figure 2: Cg with V, colored white and V, colored black.

Determining if a graph is bipartite is straightforward: Start at one node and
color it your favorite color (which is obviously black). Then proceed to each
connected node and color it your second favorite color (white). Continue by
proceeding to nodes which are connected to colored nodes, and coloring them
either black or white so that no two connected nodes have the same color. If
this becomes impossible, the graph is not bipartite.

1.3 The Dimer Model
Perfect Matching

Let G = (V,E) be a planar bipartite graph. A perfect match-
ing on G is a subgraph M = (V| E) such that every vertex in M has
degree 1.

We could equivalently call M a dimer cover of G; this term arises from
statistical mechanics, where a dimer refers to a polymer formed of only two
monomers, that is, a chain with only two links.

Below we see one of many possible perfect matchings on a grid graph:

Figure 3: A perfect matching on 3 x 4 grid graph

We wish to construct a probability measure on all perfect matchings on a
graph. It is constructed as follows: Let w : E — R>(be a weight function on

E and define!
w(M) =[] we)
eEE

Then we have a total measure

M perfect

which is often called the partition function of G, again arising from statistical
mechanics jargon. This allows us to construct a probability measure on perfect
matchings:

LTf, for some reason, you wish to have weights behave additively, take exponents.

Dimer Model

The dimer model is the probability measure on perfect match-
ings M of G where:

P(M) o w(M)
or equivalently

The simplest case of the dimer model occurs when we set w = 1, that is, all
edges are weighted equally, and consequently so are the perfect matchings. In
this case, Z(G) is equal to simply the number of perfect matchings.

1.4 Counting Perfect Matchings

Throughout this section, we will let G = (V, W) be a connected, planar, bi-
partite graph with a fixed embedding in the plane, and set w = 1. Computing
the number of perfect matchings is thus equivalent to computing Z(G). Some
graphs have very few perfect matchings; for example, Co; has only two perfect
matchings:

Figure 4: The only two perfect matchings on Cg

As is the case for many calculations in this class, we will find that it is
possible to compute the number of perfect matchings on a graph by taking the
determinant of a matrix. First, note that because G is bipartite, we may write
its adjacency matrix A in blocks as follows, ordering the vertex set of G by
placing the vertices in V, before those in V5:

s { 0 | B }
B |0
Observe that the rows of B are indexed by vertices 1,2,...,n € V, and the
columns are indexed by vertices 1,2, ...,m € V,. Thus B is a matrix with a 1 in
entry ij if vertex i is connected to vertex j, and a 0 otherwise. We often call B
the bipartite adjacency matrix of a graph. Note that for a general bipartite

graph we do not need B to be square, but in order for a perfect matching to exist
this is necessary. We will thus work under the assumption m = n. We could
also weight the entries of B by w(e) as mentioned in the previous subsection.

The next fact we will observe is that

detB= Y e(M)w(M),

M perfect

where (M) = —1 or 1 depending on each matching in a nonobvious way. This
arises from the permutation expansion of a determinant. Recall that for any
matrix:

detla;;] = Z sgn(0)a1s, 20, --Ano,
€Sy

For our matrix B, we claim that an entry in the above sum corresponds to
a hypothetical matching, and is either 0 or +w(M) depending on whether that
matching exists. To see this, we represent o in two-line notation. Each column
gives us a matching between 1,2,....n € V, and 1,...,7 € V,. For example, the
permutation ¢ = (132) in S3 corresponds with a perfect matching in the Cg

oy O
%

Figure 5: A permutation and corresponding perfect matching

=N
| \GIL]
N—

Since a;q, is 0 if an edge does not exist, and w(io;) otherwise, each term of
the permutation expansion gives 0 if there are missing edges in a hypothetical
matching, or w(M) if all requisite edges are present.

We continue by computing the determinant of the bipartite matrix of Cy via
permutation expansion:

1 0
B=|1 1 det B=(1-1-1)sgn(id)+ (1-1-1)sgn(123) =2
0 1

—_ O =

It just so happened that in this case, det B = Z(G). However, this only
happened because sgn(c) = 1 for each permutation corresponding to a perfect
matching. This does not happen for Cjy:

det B = (1-1)sgn(id)
@.o B= E ﬂ +(1-1)sgn(21)
=1-1
=0

However, the failure of this determinant to calculate the number of perfect

matchings can be remedied by constructing a new matrix K,simply by putting
a negative sign on some entries of B:

11
K—[l 1], det K = 2

It is a a nontrivial theorem that this approach can, in fact, work in all cases:

Theorem (Kastelyn, 1961)

If B = [w(ij)] is the bipartite adjacency matrix associated with
a biparatite graph, then there is a choice of signs o : E — {+1} and a
matrix K so that

K= [w(z‘j)a(ij)];gj-

and det K = +7(Q)

We call K the Kastelyn Matrix associated with a bipartite graph. It is
possible to construct o by arranging for each face F' = {ey,...,ea} to satisfy
the following multiplicative edge condition:

2k

1
[[ote) - { k odd
=1

—1 k even

The intuition behind this is that the following pair of perfect matchings
should correspond to equal values in the permutation expansion, but they cor-
respond to permutations with opposite signs, and this happens precisely when
you have a cycle of length 4k:

00 O

Figure 6: Two perfect matchings in 4k-cycles whose corresponding permutations
have opposite signs.

An algorithm to check each face one at a time systematically and change at
most one edge in each face is as follows:

Algorithm for assigning signs to edges:

Fix an embedding of G in the plane, so G = (V,E,F). Then
construct the dual graph G* of GG, which has a vertex for every face,
and edges connecting each adjacent face in F across each edge in E
they share. In particular, every edge e € F is in bijection with edges e*
in of G*, since adjacent faces share edges.

Find a spanning tree T' of G* and select one node to be the root.

Start changing signs by considering a face f corresponding to an
outermost leaf f* of T. Check to see if f satisfies the multiplicative
edge condition. If necessary, change the sign of one edge of f: the edge
e which corresponds to edge e* which connects f* to the spanning tree.

Remove the leaf from the spanning tree T and repeat until you are
done or this task is impossible. (If it is impossible, are there no perfect
matchings?)

