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1 Example: Aztec Diamond Graph

We begin with an example of the Kasteleyn matrix using a bipartite
Aztec Diamond graph of order 2, as shown in Figure 1. Let G = (V, E) be
this graph and let the sign function o : E — {£1} be defined by the figure
with unlabelled edges mapping to +1. Note that this map satisfies the defining
property that
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for each face F = {ey,...,eq} defined by G.
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Figure 1: A Bipartite Aztec Diamond of Order 2

We can also consider the order n Aztec Diamond graph. Figure 2 shows the
case n = 3. In general, the order n Aztec Diamond graph has

2("3") perfect matchings.



Figure 2: Aztec Diamond of Order 3

2 Edge - Placement Probability

We now study the probability that a given edge in a bipartite graph
appears in a random perfect matching. Specifically, let G = (V = V,1IV,, E) be
an embedded, planar, bipartite graph. We assume that G has perfect matchings,
so in particular |V,| = |V, |.

Let K be its Kasteleyn matrix so that K is an |V,| X |V,| matrix whose rows
are indexed by black vertices and columns by white vertices. Then

| det K| = #{perfect matchings on G}.

Suppose e € E. We would like to know how to compute P{e € M} where
M is a uniformly random perfect matching on G.

2.1 Motivation

Let us see how this probability arises in studying Aztec Diamonds. In-
spection shows that for large n, uniformly random perfect matchings on the
Aztec Diamond tend to follow a particular patter as shown in Figure 3. Within
the circle, the matching M appears random. However, outside of the circle, we
find a remarkably regular “frozen grid” pattern.

It can be shown that as n — oo the probability of this pattern occurring
goes to 1. To show this, we compute P{e € M} for a fixed horizontal edge e near
the boundary of the Aztec Diamond. We eventually find that P{e € M} — 0
as n — 0o, thus leaving only vertical edges.

2.2 Computation

Let us compute the desired probability. Set G, E,V, and M as before.
Let e € E be arbitrary. We have
#{M|ec M}y #{M|ecM}
#{My  |det K|

P{e e M} =



Figure 3: Aztec Diamond Limit Patter

We must determine #{M | e € M}.
Define G' = (V', E’) where

V' =V \{endpoints of e} and E’ = E~ ({e} U {all edges incident to e}).
Let M’ represent a perfect matching on G’. Then

#{M | ec M} =4#{M'}.

The equality is easily observed by drawing a minimal example.

We note that, as G is bipartite, the vertices removed from V are of opposite
colors. Removing them thus corresponds to removing one column and one row
from K. It can be shown that the resulting matrix K’ is indeed the Kasteleyn
matrix for G'.

With this in mind, suppose that e has endpoints (a,b) € V4 x V,. Then
K’ = K?, denoting K with row a and column b removed. We thus have

#{M'} = | det K|

whence
| det(K})|

Ple € M} = T3a(®)]

= [(K™)bal

where (K1), denotes the bath entry of K inverse. The right-most equality
follows from Cramer’s Rule. In words, the probability that a given edge e in
a bipartite, planar graph G, with endpoints a € V, and b € V is equal to the
bath entry of K 1.



3 Dimers and Spanning Trees (Temperley Map)

We will now observe a connection between perfect matchings and span-
ning trees. Specifically, we will show that spanning trees of a planar graph G
are in bijection with the perfect matchings on the double graph of G.
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Figure 4: Grid Graph and its Dual

Consider a planar, bipartite graph G = (V| F) and its dual G* = (V*, E*).
Distinguish a vertex vy € V and let vy, € E* represent the “outside” vertex
from G. Considering G as a compact subspace of R?, we can consider v, to be
the point oo in the one point compactification R? U {oo}.

The case that G is a 2 x 3 grid is shown in the Figure 4. There, G is drawn
with solid lines and G* is drawn with dotted lines. The distinguished vertex v
is shown with an open circle. The vertex v, is represented by the outermost
oval.

Pick a spanning tree T for G and let T be the dual spanning tree for G*.
That T is dual to T' means that the edges of T' and T™ do not intersect. It is
straightforward to check that T* always exists. Figure 5 shows T in yellow and
T* in green.

- 1 RNy
- i N
. <
H N
. N
P : Q .
, N
I’ \\

/ \

/ \
A | S I - N |, \
1 Y
1 \

I 1
1 1
i

! ]
1 1
\ ’I
\

\ 1

N /
\\\ : ”/
< .
. : o
. . -
~~a e
________ -

Figure 5: Dual Spanning Trees



We now define the double graph of G to be the graph G4 = (Vg, Eq) with
Va = (VI V* II {all intersections of an edge e with its dual e*}) \ {vg, Voo }-

The edge set Ey is obtained as a subdivision of F II E* according to the inter-
sections of each edge with its dual. This process is shown in Figure 6, so that
each pair (e, e*) contributes four edges to E4. Note that the definition of G4
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Figure 6: Subdivision Process for Double Graph

depends upon the vertex vg.

We can now define the correspondence between the spanning trees on G and
the perfect matchings on G4. Let T and T™ be as before and identify them with
their images in G4. Starting at the leaves of T" and T™, match pairs of vertices
in G4 along each tree until all vertices are matched. The result will be a perfect
matching on Gy.
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Figure 7: Subdivision Process for Double Graph

This process defines a bijection between the spanning trees of G and the
perfect matchings of G4. This bijection is due to Temperley. Figure 7 shows
the perfect matching on G4 from our example.



