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1 Example: Aztec Diamond Graph
We begin with an example of the Kasteleyn matrix using a bipartite

Aztec Diamond graph of order 2, as shown in Figure 1. Let G = (V,E) be
this graph and let the sign function σ : E → {±1} be defined by the figure
with unlabelled edges mapping to +1. Note that this map satisfies the defining
property that

2k∏
i=1

σ(ei) =

{
1 k odd
−1 k even

for each face F = {e1, . . . , e2k} defined by G.

Figure 1: A Bipartite Aztec Diamond of Order 2

We can also consider the order n Aztec Diamond graph. Figure 2 shows the
case n = 3. In general, the order n Aztec Diamond graph has

2(
n+1
2 ) perfect matchings.
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Figure 2: Aztec Diamond of Order 3

2 Edge - Placement Probability
We now study the probability that a given edge in a bipartite graph

appears in a random perfect matching. Specifically, let G = (V = V•qV◦, E) be
an embedded, planar, bipartite graph. We assume that G has perfect matchings,
so in particular |V•| = |V◦|.

Let K be its Kasteleyn matrix so that K is an |V•|× |V◦| matrix whose rows
are indexed by black vertices and columns by white vertices. Then

|detK| = #{perfect matchings on G}.

Suppose e ∈ E. We would like to know how to compute P{e ∈ M} where
M is a uniformly random perfect matching on G.

2.1 Motivation
Let us see how this probability arises in studying Aztec Diamonds. In-

spection shows that for large n, uniformly random perfect matchings on the
Aztec Diamond tend to follow a particular patter as shown in Figure 3. Within
the circle, the matching M appears random. However, outside of the circle, we
find a remarkably regular “frozen grid” pattern.

It can be shown that as n → ∞ the probability of this pattern occurring
goes to 1. To show this, we compute P{e ∈M} for a fixed horizontal edge e near
the boundary of the Aztec Diamond. We eventually find that P{e ∈ M} → 0
as n→∞, thus leaving only vertical edges.

2.2 Computation
Let us compute the desired probability. Set G,E, V, and M as before.

Let e ∈ E be arbitrary. We have

P{e ∈M} = #{M | e ∈M}
#{M}

=
#{M | e ∈M}
|detK|

.
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Figure 3: Aztec Diamond Limit Patter

We must determine #{M | e ∈M}.
Define G′ = (V ′, E′) where

V ′ = V r {endpoints of e} and E′ = Er ({e} ∪ {all edges incident to e}) .

Let M ′ represent a perfect matching on G′. Then

#{M | e ∈M} = #{M ′}.

The equality is easily observed by drawing a minimal example.
We note that, as G is bipartite, the vertices removed from V are of opposite

colors. Removing them thus corresponds to removing one column and one row
from K. It can be shown that the resulting matrix K ′ is indeed the Kasteleyn
matrix for G′.

With this in mind, suppose that e has endpoints (a, b) ∈ V• × V◦. Then
K ′ = Kb

a, denoting K with row a and column b removed. We thus have

#{M ′} = |detKb
a|

whence

P{e ∈M} = |det(K
b
a)|

|det(K)|
= |(K−1)ba|

where (K−1)ba denotes the bath entry of K inverse. The right-most equality
follows from Cramer’s Rule. In words, the probability that a given edge e in
a bipartite, planar graph G, with endpoints a ∈ V• and b ∈ V◦ is equal to the
bath entry of K−1.
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3 Dimers and Spanning Trees (Temperley Map)
We will now observe a connection between perfect matchings and span-

ning trees. Specifically, we will show that spanning trees of a planar graph G
are in bijection with the perfect matchings on the double graph of G.

Figure 4: Grid Graph and its Dual

Consider a planar, bipartite graph G = (V,E) and its dual G∗ = (V ∗, E∗).
Distinguish a vertex v0 ∈ V and let v∞ ∈ E∗ represent the “outside” vertex
from G. Considering G as a compact subspace of R2, we can consider v∞ to be
the point ∞ in the one point compactification R2 ∪ {∞}.

The case that G is a 2× 3 grid is shown in the Figure 4. There, G is drawn
with solid lines and G∗ is drawn with dotted lines. The distinguished vertex v0
is shown with an open circle. The vertex v∞ is represented by the outermost
oval.

Pick a spanning tree T for G and let T ∗ be the dual spanning tree for G∗.
That T ∗ is dual to T means that the edges of T and T ∗ do not intersect. It is
straightforward to check that T ∗ always exists. Figure 5 shows T in yellow and
T ∗ in green.

Figure 5: Dual Spanning Trees
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We now define the double graph of G to be the graph Gd = (Vd, Ed) with

Vd = (V q V ∗ q {all intersections of an edge e with its dual e∗})r {v0, v∞}.

The edge set Ed is obtained as a subdivision of E q E∗ according to the inter-
sections of each edge with its dual. This process is shown in Figure 6, so that
each pair (e, e∗) contributes four edges to Ed. Note that the definition of Gd

Figure 6: Subdivision Process for Double Graph

depends upon the vertex v0.
We can now define the correspondence between the spanning trees on G and

the perfect matchings on Gd. Let T and T ∗ be as before and identify them with
their images in Gd. Starting at the leaves of T and T ∗, match pairs of vertices
in Gd along each tree until all vertices are matched. The result will be a perfect
matching on Gd.

Figure 7: Subdivision Process for Double Graph

This process defines a bijection between the spanning trees of G and the
perfect matchings of Gd. This bijection is due to Temperley. Figure 7 shows
the perfect matching on Gd from our example.
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