Applied Notes

November 20th, 2019

Proof: (continued) We showed previously that the limit $\lim _{T \rightarrow \infty} \hat{\pi}_{i}^{(T)}$ exists. Now let $u_{i}^{(T)}$ be the expected number of visits to i with $1 \leq t \leq T$. Since $|\{t \mid 1 \leq t \leq T, X(t)=i\}|=\sum_{t=1}^{T} \mathbb{1}_{X(t)=i}$, where

$$
\mathbb{1}_{X(t)=i}=\left\{\begin{array}{ll}
1, & X(t)=i \\
0, & \text { otherwise }
\end{array},\right.
$$

$u_{i}=\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}_{X(t)=i}\right]=\sum_{t=1}^{T} \mathbb{E}\left[\mathbb{1}_{X(t)=i}\right]=\sum_{t=1}^{T} \mathbb{P}(X(t)=i)$. Now $\mathbb{P}(X(t)=i)=\sum_{j} \mathbb{P}(X(t-1)=j) P_{j i}$, so

$$
u_{i}=\left(\sum_{j} \sum_{t=1}^{T-1} \mathbb{P}(X(t)=j) P_{j i}\right)+\mathbb{P}(X(1)=i)
$$

But $\sum_{t=1}^{T-1} \mathbb{P}(X(t)=j)=u_{j}-\mathbb{P}(X(T)=j)$, so

$$
u_{i}=\left(\sum_{j} u_{j} P_{j i}\right)-\left(\sum_{j} \mathbb{P}(X(T)=j) P_{j i}\right)+\mathbb{P}(X(1)=i)
$$

Since $\mathbb{E}\left[\hat{\pi}^{(T)}\right]=\frac{1}{T} u^{(T)}, \mathbb{E}\left[\hat{\pi}_{i}^{(T)}\right]=\sum_{j} P_{j i} \mathbb{E}\left[\hat{\pi}_{j}^{(T)}\right]+O\left(\frac{1}{T}\right)$. Thus as $T \longrightarrow \infty, \lim _{T \rightarrow \infty} \hat{\pi}_{i}^{(T)}=\hat{\pi}_{i}$.

Definition 1: A Markov chain X with transition matrix P is ergodic if for all pairs $(i, j), P_{i j}^{n}>0$ for some n.

Definition 2: A Markov chain X with transition matrix P is acyclic if $\operatorname{gcd}\left\{n \in \mathbb{N} \mid P^{n}{ }_{i i}>0\right\} \neq 1$.

Proposition 3: If a transition matrix P is ergodic and acyclic, then there is a unique solution to $\pi P=\pi$ that satisfies $\sum_{i} \pi_{i}=1$ and $\pi_{i}>0$.

Example: Consider a Markov chain with only two states:

Then the transition matrix is $P=\left[\begin{array}{cc}1-p & p \\ q & 1-q\end{array}\right]$, and a stationary distribution is $\pi=\left[\begin{array}{cc}\frac{q}{p+q} & \frac{p}{p+q}\end{array}\right]$.

Theorem 4: (Perron-Frobenius) Every transition matrix P has eigenvalues with magnitude no greater than 1 , and P has at least one left nonnegative left eigenvector with eigenvalue 1.

Example: Move a king randomly on a chessboard, picking uniformly between legal moves at each time step. What proportion of time will it spend in the four corners?

The Markov chain is clearly reversible, so if we let l_{i} be the number of legal moves out of square i, then if $i \longrightarrow j$ is a legal move, $P_{i j}=\frac{1}{l_{i}}$. Thus

$$
\pi_{i}=\frac{l_{i}}{\sum_{j} l_{j}}
$$

Now if i is a corner, then $\pi_{i}=\frac{3}{4 \cdot 3+24 \cdot 5+36 \cdot 8}=\frac{1}{140}$. Accounting for all four corners, we see that the king spends $\frac{1}{35}$ of its time in a corner.

Example: Given a room of dimensions $a \times b \times c$, repeatedly place and remove $1 \times 1 \times 1$ boxes in the following manner:

Consider the set of $1 \times 1 \times 1$ spaces in the room, which may or may not contains boxes. Of these spaces, consider those that have either a box or wall adjacent to them in the negative x, y, and z directions, and do not have one adjacent to them in the positive directions. Notice that these spaces are exactly the spaces in a perfect matching on the hex graph that can be changed.

Sample a random space from this smaller collection. If it contains a box, remove it. If it does not contain a box, then add one with some probability q. The resulting distribution is known as the Gibbs distribution on the boxes.

For example, the green box can be considered for removal in the following diagram, but the orange one cannot.

