Week 9, Lecture 2

Chandan Tankala

27 November 2019

1 2D Ising model

1.1 Summary

This is a $2 D$ Ising model on a square lattice with periodic boundary conditions. In a $2 D$ ising model, phase transition happens which doesn't in a $1 D$ Ising model.

In particular, the phase transition happens at $K=\frac{\operatorname{arcsinh}(1)}{2}$

1.2 Computation of Z :

The main idea is to use duality (hidden symmetry in the model).
Recall,

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}, \cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

Then:

$$
Z=\sum_{\sigma} \exp \left(\frac{K}{T} \sum_{i \sim j} \sigma_{i} \sigma_{j}\right)=\sum_{\sigma} \prod_{i \sim j} \exp \left(\frac{K}{T} \sigma_{i j}\right)
$$

If $\sigma= \pm 1$, then:

$$
\begin{aligned}
\exp \left(\frac{K}{T} \sigma\right)=\cosh \left(\frac{K}{T}\right)+\sinh \left(\frac{K \sigma}{T}\right) & =\sum_{\sigma} \prod_{i \sim j}\left(\cosh \frac{K}{T}+\sinh \frac{K \sigma_{i} \sigma_{j}}{T}\right) \\
& =\sum_{\sigma}\left(\cosh \frac{K}{T}\right)^{|E|} \times \prod_{i \sim j}\left(1+\frac{\sinh \frac{K \sigma_{i} \sigma_{j}}{T}}{\cosh \frac{K \sigma_{i} \sigma_{j}}{T}}\right) \\
& =\left(\cosh \frac{K}{T}\right)^{|E|} \sum_{\sigma} \prod_{i \sim j}\left(1+\tanh \frac{K \sigma_{i} \sigma_{j}}{T}\right)
\end{aligned}
$$

When T is large, K is small $\Longrightarrow K \sigma_{i} \sigma_{j}$ is small.
Let $\tanh K=e^{-K^{*}}$. Get partition function for Ising model with K^{*} and not $K . K=K^{*}=K_{c}$ when $\sinh (2 K)=1$.

