MATH 607 (Applied Math II) Lecture Notes

Christophe Dethier

January 17, 2019

Today we will talk about "The" Poisson Process. Let $N \sim \operatorname{PPP}(\lambda d x)$ on $\mathbb{R}_{\geq 0}$, and $X(t)=N([0, t])$. Let $T^{k}=\inf \left\{t \geq 0: X_{T^{k-1}+t}>k-1\right\}$. That is, T^{k} is the distance between the $k-1$ th point and the k th point. Then T^{1}, T^{2}, \ldots are iid exponential random variables with rate parameter λ. The proof of this uses the independence of PPP's on disjoint sets, and

$$
\mathbb{P}\left\{T^{1}>t\right\}=\mathbb{P}\{N([0, t])=0\}=e^{-\lambda t}
$$

Note: Assuming waiting times are exponentially distributed implies memorylessness.
Let $\phi: \mathbb{N}_{\geq 0} \rightarrow \mathbb{R}$. Then

$$
\mathbb{E}\left[\phi\left(X_{t}\right)\right]=\sum_{n=0}^{\infty} \phi(n) e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

Here's another method of computing this: Let $f(t)=\mathbb{E}\left[\phi\left(X_{t}\right)\right]$. Then

$$
\frac{d}{d t} \lim _{\epsilon \rightarrow 0} \frac{\mathbb{E}\left[\phi\left(X_{t+\epsilon}\right)\right]-\mathbb{E}\left[\phi\left(X_{t}\right)\right]}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \mathbb{E}\left[\phi\left(X_{t+\epsilon}\right)-\phi\left(X_{t}\right)\right]=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \mathbb{E}\left[\phi\left(X_{t+\epsilon}\right)-\phi\left(X_{t}\right) \mid X_{t}\right] .
$$

Well, $X_{t+\epsilon}-X_{t} \sim \operatorname{Pois}(\lambda \epsilon)$. Furthermore, for small ϵ, we have $X_{t+\epsilon}-X_{t}=0$ with probability roughly $1-\lambda \epsilon$, 1 with probability roughly $\lambda \epsilon$, and >1 with small probability. Therefore,

$$
\mathbb{E}\left[\phi\left(X_{t+\epsilon}\right)-\phi\left(X_{t}\right) \mid X_{t}=x\right]=\lambda \epsilon(\phi(x+1)-\phi(x))+\mathcal{O}\left(\epsilon^{2}\right)
$$

Putting this together, we see that

$$
\lim _{\epsilon \rightarrow 0} \mathbb{E}\left[\mathbb{E}\left[\phi\left(X_{t+\epsilon}\right)-\phi\left(X_{t}\right) \mid X_{t}\right]\right]=\lambda\left(\mathbb{E}\left[\phi\left(X_{t}+1\right)\right]-\mathbb{E}\left[\phi\left(X_{t}\right)\right]\right)
$$

So in conclusion,

$$
\frac{d}{d t} \mathbb{E}\left[\phi\left(X_{t}\right)\right]=\lambda\left(\mathbb{E}\left[\phi\left(X_{t}+1\right)-\mathbb{E}\left[\phi\left(X_{t}\right)\right]\right)\right.
$$

So it follows that

$$
\sum_{n} \phi(n) e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

is a solution to the initial value problem

$$
\frac{d}{d t} \mathbb{E}\left[\phi\left(X_{t}\right)\right]=\lambda\left(\mathbb{E}\left[\phi\left(X_{t}+1\right)\right]-\mathbb{E}\left[\phi\left(X_{t}\right)\right]\right)
$$

with the initial condition $\mathbb{E}\left[\phi\left(X_{0}\right)\right]=\phi(0)$. Let's verify that this power series is indeed a solution to this differential equation.

$$
\begin{aligned}
\frac{d}{d t} \sum_{t} \phi(n) e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} & =\sum_{n} \phi(n) \lambda\{n-\lambda t\} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \\
& =\lambda \sum_{n}\{\phi(n+1)-\phi(n)\} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \\
& =\lambda \sum_{n} \phi(n) e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!}-\lambda \sum_{n} \phi(n) e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} \\
& =\sum_{n} \phi(n)(n-\lambda t) \frac{(\lambda t)^{n-1}}{n!} .
\end{aligned}
$$

This problem should have a similar feel to the proof of Stein's Lemma on the homework. Later we will use these initial value problems as a method to solve problems without knowing the solution beforehand.

More generally, what can we say about

$$
\Phi=\int \phi(x) N(d x)=\sum_{i} \phi\left(x_{i}\right)
$$

where $N=\sum \delta_{x_{i}}$ is $\operatorname{PPP}(\mu)$ on S ?
Theorem:

$$
\mathbb{E}\left[e^{i u \Phi}\right]=\exp \left\{\int_{S}\left(e^{i u \phi(x)}-1\right) \mu(d x)\right\} .
$$

Corollary:

$$
\mathbb{E}[\Phi]=-i \partial_{u} \mathbb{E}\left[e^{i u \Phi}\right]_{u=0}=\int_{S} \phi(x) \mu(d x)
$$

