
Applied Stochastic Processes

Math 607

January 29, 2020

We begin with the canonical real world process: Question: How many
U238 (uranium) atoms decay from a 1 gram chunk of U238 in t seconds? [The
key is that all of the atoms are independent of each other, and atoms have
no memory.] We know that the half life of U238 is 1.41× 1017 seconds. So 1
gram = 2.53× 1018 atoms of uranium.

Let T be the time until a particular atom decays. This is memoryless,
which means that given an atom has not yet decayed, the chance it will decay
is the same as it was before (so it does not depend on how long it has waited).
So

P{T > t} = P{T > t+ s | T > s}
⇒ P{T > t} = e−λt

for some λ. i.e. T ∼ Exp(rate = λ). So

1

2
= P{T > t1/2} = e−λt1/2

⇒ λ = log 2/1.41× 1017 = 4.9× 10−18 decays per second

Let X be the number of atoms that decay in 1 second. So

X ∼ Binom(n = 2.35× 1018, p = 1− eλ ≈ λ = 4.9× 10−18).

So

P{X = k} =
(
n

k

)
pk(1− p)n−k

=
n(n− 1) . . . (n− k + 1)

k!
λk(1− λ)n−k

≈ (nk)k

k!
e−λn
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Then E[X] = µ = nλ, so (nλ)k

k!
e−λn = µk

k!
eµ. Note that this is a Poisson

distribution! Therefore X ∼ Pois(µ).
More generally, suppose that in some space X, we lay down tiny little

lights with density ∝ µ (Where µ is a σ-finite measure). i.e. for any A ⊆
X, the number of lights in A ≈ µ(A) × M for large M , and each light
is on with probability 1/M , independently. Fact: as M → ∞, N(A) :=
#(lights on in A) ∼ Pois(µ(A)).

Definition 0.1. A Poisson Point Process with mean measure (or intensity)
µ, i.e. PPP (µ) on some space X is a random point measure N on X:

1. N(A) ∈ {0, 1, 2, . . .} counts the number of points in A (point measure)

2. N(A) ∼ Pois(µ(A))

3. if A,B are disjoint, then N(A), N(B) are independent

Properties

(Enumeration): We may write N =
∑

i δXi
for some countable {Xi} ⊆

X (locations in the space). so that
∫
f(x) = dN(X) =

∑
i f(xi).

(Mean measure): E[
∫
f(x)dN(x)] =

∫
f(x)dµ(x).

Proof. Let f(x) =
∑

j fj1Aj
(x) for some partition A of X.

E

[∫
fdN =

∑
j

fjN(Aj)

]
=
∑
j

fjE[N(Aj)]

=

∫
f(x)dµ(x)

Definition 0.2. N is a PPP (µ) onX if and only if ∀A ⊆ X (Borel), N(A) ∼
Pois(µ(A)) and for A,B ⊆ X disjoint, N(A) and N(B) are independent.

Note: We can always write N =
∑

i δXi
for some collection of “points”

{Xi} ⊆ X. And δ is the measure such that ∀f
∫
X
f(x)δY (dx) = f(y)∀f . If

µ is a measure on X then for measurable sets A ⊆ X,

1. µ(A) ≥ 0
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2. if A ∩B = ∅⇒ µ(A ∪B) = µ(A) + µ(B)

3. µ(∅) = 0

In general, we want µ to have a density, and we pick points A in relation
to that density.

Some background: For a random variable X, the characteristic function is
φx(u) = E[eiuX ]. Note that if X has probability density p, then

∫
p(x)eiuXdx.

Facts

1. X d
= Y if and only if φx(u) = φy(u) ∀u.

2. X, Y are independent if and only if E[ei(uX+vY )] = φX(u)φY (v).

Theorem 0.3. IfNk ∼ PPP (µk), for some k, thenN =
∑

k ∼ PPP (
∑

k µk).

Proof. Independence is obvious, so we need to check thatN(A) =
∑

kNk(A) ∼
Pois(

∑
k µk(A)). Recall that Zk = Nk(A) ∼ Pois(µk(A)) and is independent.

So

φZk
(u) = E[eiuZk ]

=
∑
n≥0

eiun
µk(A)

n

n!
e−µk(A)

= exp(µk(A)(e
iu − 1)).

Then by number 2 above, E[eiuN(A)] =
∏

k φZk
(u), which is equivalent to

exp(
∑

k µk(A)(e
iu − 1)) by part 1.

1 Example: Rainfall
Rain falls for T = 10 minutes on a patio at a rate of ν = 5000 raindrops
per minute per square meter. Each drop splatters a random radius R drawn
from an exponential distribution with mean of 1 centimeter, independently.

Assume the drops fall as a (uniform) PPP . We aim to answer two ques-
tions:

1. What is the mean and variance of the total amount of water on a given
square meter of patio, if drops are 1 millimeter thick?

2. How much of the patio remains dry?
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1.1 Question 1

To answer question one, we let N(A) be the number of drops in an area
A of the patio. Then A ∼ Pois(νT |A|), where |A| is the area of A. In
particular, let M be the total number of drops on 1 square meter. Then
M ∼ Pois(νT ) = 50000. Then V = (total volume) =

∑M
i=1 πR

2
i · 1mm where

Ri is the radius of the ith drop.

Theorem 1.1. Wald’s Theorem If X1, X2, . . . are independent and identi-
cally distributed, then E[

∑N
n=1Xi] = E[N ]E[X].

So by Wald’s Theorem, E[V ] = E[M ]πE[R2].

Definition 1.2. E[Rn] =
∫∞
0
rne−rdr = n!cmn

So

E[V ] = E

[
M∑
i=1

πR2
i

]
= πE[M ]E[R2]

=
∞∑
m=0

P{M = m}E

[
M∑
i=1

πR2
i

]

=
∞∑
m=0

P{M = m}mπE[R2]

=
∞∑
m=0

P{M = m}2πm

= 2πνT cm2 ×mm

Definition 1.3. Background

• var[X] = cov[X,X] = E[X2]− E[X]2

• cov[X, Y ] = E[XY ]− E[X]E[Y ]

• var[X + Y ] = var[X] + var[Y ] if X and Y are independent

• var[aX] = a2 var[X] for some constant a

• sd(X) =
√

var[X]

• var[X] = E[(X − E[X])2]
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• var[V ] = var[E[V |M ]] + E[var[V |M ]]

Then E[V |M = m] = 2πm, so

var[V |M = m] = var[
m∑
i=1

2πR2
i ]

= m(2π)2 var[R2]

= m(2π)2(E[R4]− E[R2]2)

= m(2π)2(4!− (2!)2)

= 20m(2π)2

Now we can put the pieces together to see that

var[V ] = var[2πM ] + E[2π2 · 20 ·M ] = ((2π)2 + (2π)2 · 20)νT,

so var[V ] = 21νT (2π)2.

1.2 Question 2

How umch of the patio gets wet? i.e. What is the chance a given point gets
hit with a raindrop? Let’s associate each drop with three coordinates:

(xi, yi, ri) ∈ R× R× R>0

position radius

Claim:N =
∑M

i=1 δ(xi,yi,ri) ∼ PPP on the above with intensity dxdye−rdr · νT .
(e.g. the number of drops landing on a given square meter with radius at
least t centimeters is ∼ PPP

(∫ 1

0

∫ 1

0

∫∞
Rt
dxdye−rdr = e−t

)
.

Theorem 1.4 (Labeling). To each point of a Poisson Point Process on X
with intensity µ, associate an independent, random label from Y with prob-
ability density ν(y, x) (where y is the label and x the location of the point),
the result is also a poisson point process.

i.e. if N =
∑

i δxi and Li independent of each other, then P{Li = y} =
ν(y, xi), and then N =

∑
i δ(xi,Li) ∼ PPP(µ(dx)ν(dy, x)).

Example 1.5. If A ⊆ X × Y , and µ(dx) = f(x)dx, ν(dy, x) = g(x, y)dy,
then N(A) = #{i | (xi, Li) ∈ A} ∼ Pois

(∫
A
f(x)g(x, y)dxdy

)
.
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Corollary 1.6. M0 = #{i | Ri ≤ 1cm}, and M1 = #{i | Ri > 1cm},
independent and conditioned on M =M0 +M1, then M0 ∼ Pois(νT (1− 1

e
))

and M1 ∼ Pois(ν T
e
) since P{R ≤ 1} = 1− 1

e
.

Now let A be the number of drops that hit the point (0, 0), so A =
{x, y, r | x2 + y2 ≤ r2}. Then (R)P{N(A) > 0} = 1− exp(−E[N(A)]), and

E[N(A)] =

∫ ∫ ∫
A

dxdye−rdr

=

∫ ∞
0

e−r(πr2)dr

= 2π.

Thus 1− exp(−E[N(A)]) = 1− e−2πνT = 0.95.
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