607 Applied Notes

$2 / 3 / 2020$

Erratum for homework 4, question 2: The probability that the tower does not fall over during a given t minutes is $e^{-n t}$.

List of topics for Midterm 1:

1. Poisson point processes:

- definition, assumptions
- thinning, labeling, additivity
- how to simulate one
- exponential waiting times for $P P(\lambda \mathrm{~d} t)$
- characteristic function

2. General:

- covariance
- independence
- conditional expectation
- computing expectation (by conditioning)
- law of total (co)variance

3. Continuous-time Markov chains:

- definition(s):
- jump rates $\rightarrow G$
- exponential waiting times + jump probabilities
- transition probabilities $\left(e^{t G}\right)_{x y}$
- stationary distribution $\pi G=0$
- hitting probabilities: solve $G h=0$
- hitting times: solve $G h=-1$

Midterm will be 3 problems, solve 2 .
Recall $\mathrm{Q} \# 3$) How long does an outbreak last? (on average)
Let $\tau=\inf \{t \geq 0: X(t)=0\}$. Find

$$
\mathbb{E}[\tau \mid X(0)=1]
$$

Recall

$$
G=\left[\begin{array}{cccc}
-\delta & \delta & 0 & 0 \\
\mu & -(\mu+\lambda) & \lambda & 0 \\
0 & 2 \mu & -2(\mu+\lambda) & 2 \lambda \\
0 & 0 & 3 \mu & -3(\mu+\lambda)
\end{array}\right]
$$

$$
\begin{gathered}
G_{1}=\delta \\
G_{n, n+1}=n \lambda \\
G_{n, n-1}=n \mu \\
G_{n n}=-n(\mu+\lambda)
\end{gathered}
$$

Theorem. Let X be a CTMC on S with generator matrix G, and $A \subset S$. Define

$$
\mathfrak{h}_{A}(x)=\mathbb{E}\left[\tau_{A} \mid X(0)=x\right]:=\mathbb{E}^{x}\left[\tau_{A}\right]
$$

where

$$
\tau_{a}=\inf \{t \geq 0: X(t) \in A\}
$$

Then \mathfrak{h}_{A} is the unique solution to

$$
\begin{aligned}
\mathfrak{h}_{A}(x) & =0 & \text { if } x \in A \\
G \mathfrak{h}_{A}(x) & =-1 & \text { if } x \notin A
\end{aligned}
$$

Corollary 0.1. If it makes sense,

$$
\mathfrak{h}_{A}=\left(G_{-A,-A}\right)^{-1} \mathbb{O N E}
$$

where

$$
\left(G_{-A,-A}\right)_{x y}=G_{x y} \text { for } x \notin A, y \notin A
$$

Let $\mathfrak{h}_{0}(x)=\mathbb{E}^{x}[\tau]$. Then $\mathfrak{h}(0)=0$. We want is $\mathfrak{h}(1)=$?

$$
\begin{gathered}
\delta(\mathfrak{h}(1)-\mathfrak{h}(0))=-1 \\
n \lambda(\mathfrak{h}(n+1)-\mathfrak{h}(n))+n \mu(\mathfrak{h}(n)-\mathfrak{h}(n-1))=-1
\end{gathered}
$$

SO

$$
\mathfrak{h}(n+1)=\frac{\mu+\lambda}{\lambda} \mathfrak{h}(n)-\frac{\mu}{\lambda} \mathfrak{h}(n-1)-1
$$

How to solve this? Generating functions would work. Or could just plug it in (just need first two values, then can go from there).

$$
a(n)=(\mathfrak{h}(n+1)-\mathfrak{h}(n))\left(\frac{\lambda}{\mu}\right)^{n} \Longrightarrow a(n)-a(n-1)=-\frac{1}{n \lambda}\left(\frac{\lambda}{\mu}\right)^{n}
$$

where we can take $a(n)$ to be a discrete analogue of the derivative of \mathfrak{h} (from which we could "integrate" to obtain $\mathfrak{h}(n)$).

Proof.

$$
\mathfrak{h}_{A}(x)=\frac{1}{-G_{x x}}+\sum_{y \neq x} \frac{G_{x y}}{-G_{x x}} \mathfrak{h}_{A}(y)
$$

where the first term is the mean time until leaves x, the fraction on the right is the probability that it jumps from $x \rightarrow y$ next, and the rightmost term is the mean remaining time.

Proof. We could write down proof number 2 but we're out of time.

