Applied Notes

February 12-14, 2020

Comment: Let S(t) be the CMTP on \mathbb{Z} that jumps up and down by one, both at rate $\frac{1}{2}$. What does S look like in the long term? It always has mean 0, and so the variance is just $\mathbb{E}[S(t)^2] = \mathbb{E}[(U(t) - D(t))^2]$, where U(t) is the number of jumps up before time t and D(t) is the number of jumps down. Since both U(t) and S(t) are Poisson with rate $\frac{t}{2}$, the variance of S(t) is just t. Thus the standard deviation is \sqrt{t} . Fixing N, let $B_N(t) = \frac{1}{\sqrt{N}}S(Nt)$. Then $\mathbb{E}[B_N(t)] = 0$ and $\operatorname{var}(B_N(t)) = t$. This is called Brownian Scaling. The question is, does $B_N(t)$ converge in distribution to some B(t) as $N \to \infty$?

Lemma 0.0.1: If X_N and X are Markov processes such that for all s with s < t, all x_0 , and all sets A,

$$\mathbb{P}(X_N(t) \in A \mid X_N(s) = x_0) \longrightarrow \mathbb{P}(X(t) \in A \mid X(s) = x_0),$$

then $X_N \longrightarrow X$ in distribution.

Definition 0.1: The B_N converge to some B by the lemma, and it is called **Brownian Motion**.

Theorem 0.2: If $P(t,x) = \mathbb{P}(B(t) = x \mid B(0) = 0)$, then $\frac{d}{dt}[P(t,x)] = \frac{1}{2}\frac{d^2}{dx^2}[P(t,x)]$, $P(0,x) = \delta_0(x)$, and $P(t,x) = \frac{1}{\sqrt{2\pi t}}e^{-x^2/2t}$ — that is, $B(t) \sim N(0,t)$.

Lemma 0.2.1: If $W \sim N(0,t)$, then $\mathbb{E}[e^{-uW}] = e^{-u^2t/2}$. (This is the Laplace Transform, which uniquely determines probability distributions.)

Proof:

$$\mathbb{E}[e^{-uW}] = \int_{-\infty}^{\infty} e^{-ux} \cdot \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t} \ dx = e^{-u^2t/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-(x+ut)^2/2t} dx$$

by completing the square. But that integral is just a shifted normal distribution, so it evaluates to 1. Thus $\mathbb{E}[e^{-uW}] = e^{-u^2t/2}$.

Comment: We can also construct *B* another way. Let Λ be a PPP on $[0, \infty) \times \mathbb{R}$, where $[0, \infty)$ represents time and \mathbb{R} represents jump size, with mean intensity $dt \cdot f(x) \cdot dx$, where *f* is a probability density (that is, $\int_{-\infty}^{\infty} f(x) dx = 1$). Now if *X* has probability density *f*, then $\mathbb{E}[X] = 0 = \int_{-\infty}^{\infty} xf(x) dx$ and $\mathbb{E}[X^2] = \sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx$. Let S(t) be the sum of the jumps out to time *t*. Then

$$S(t) = \sum_{\substack{(t_i, x_i) \in \Lambda \\ t_i \leq t}} x_i = \int_0^t \int_{-\infty}^\infty x \Lambda(dt, dx).$$

Now let $B_N(t) = \frac{1}{\sqrt{N}}S(Nt) = \frac{1}{\sqrt{N}}\int_0^t \int_{-\infty}^\infty x\Lambda(dt, dx)$. Then

$$\mathbb{E}[e^{-uB_N(t)}] = \exp\left(\int_0^{tN} \int_{-\infty}^{\infty} (e^{\frac{ux}{\sqrt{N}}} - 1)f(x) \, ds \, dx\right)$$
$$= \exp\left(\int_0^{tN} \mathbb{E}\left[e^{\frac{uX}{\sqrt{N}}} - 1\right] \, ds\right)$$
$$= \exp\left(\int_0^{tN} \mathbb{E}\left[\frac{uX}{\sqrt{N}} + \frac{u^2X^2}{2\sqrt{N}} + O\left(\frac{1}{N^{3/2}}\right)\right] \, ds\right)$$
$$= \exp\left(\int_0^{tN} 0 + \frac{u^2\sigma^2}{2\sqrt{N}} + O\left(\frac{1}{N^{3/2}}\right) \, ds\right)$$
$$= e^{-\frac{1}{2}\sigma^2u^2t} + O\left(\frac{1}{\sqrt{N}}\right) \sim N(0, \sigma^2t).$$

Thus $B_N \longrightarrow B(\sigma^2, t)$ in distribution, since B_N is a Markov process and has iid increments — in particular, $B_N(t) - B_N(s) = B_N(t-s)$ in distribution.

Theorem 0.3: 1. *B* is a standard Brownian motion if and only if *B* is a Markov process and $B(t) - B(s) \sim N(0, t - s)$ for all $0 \le s < t$.

2. The map $t \mapsto B(t)$ is continuous but nowhere differentiable almost surely.

3. If $W(t) = \frac{1}{\sqrt{c}}B(ct)$ for some c, then W(t) and B(t) are equal in distribution.