Applied Notes

February 12-14, 2020

Comment: Let $S(t)$ be the CMTP on \mathbb{Z} that jumps up and down by one, both at rate $\frac{1}{2}$. What does S look like in the long term? It always has mean 0 , and so the variance is just $\mathbb{E}\left[S(t)^{2}\right]=\mathbb{E}\left[(U(t)-D(t))^{2}\right]$, where $U(t)$ is the number of jumps up before time t and $D(t)$ is the number of jumps down. Since both $U(t)$ and $S(t)$ are Poisson with rate $\frac{t}{2}$, the variance of $S(t)$ is just t. Thus the standard deviation is \sqrt{t}. Fixing N, let $B_{N}(t)=\frac{1}{\sqrt{N}} S(N t)$. Then $\mathbb{E}\left[B_{N}(t)\right]=0$ and $\operatorname{var}\left(B_{N}(t)\right)=t$. This is called Brownian Scaling. The question is, does $B_{N}(t)$ converge in distribution to some $B(t)$ as $N \longrightarrow \infty$?

Lemma 0.0.1: If X_{N} and X are Markov processes such that for all s with $s<t$, all x_{0}, and all sets A,

$$
\mathbb{P}\left(X_{N}(t) \in A \mid X_{N}(s)=x_{0}\right) \longrightarrow \mathbb{P}\left(X(t) \in A \mid X(s)=x_{0}\right)
$$

then $X_{N} \longrightarrow X$ in distribution.

Definition 0.1: The B_{N} converge to some B by the lemma, and it is called Brownian Motion.

Theorem 0.2: If $P(t, x)=\mathbb{P}(B(t)=x \mid B(0)=0)$, then $\frac{d}{d t}[P(t, x)]=\frac{1}{2} \frac{d^{2}}{d x^{2}}[P(t, x)], P(0, x)=\delta_{0}(x)$, and $P(t, x)=\frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t}$ - that is, $B(t) \sim N(0, t)$.

Lemma 0.2.1: If $W \sim N(0, t)$, then $\mathbb{E}\left[e^{-u W}\right]=e^{-u^{2} t / 2}$. (This is the Laplace Transform, which uniquely determines probability distributions.)

Proof:

$$
\mathbb{E}\left[e^{-u W}\right]=\int_{-\infty}^{\infty} e^{-u x} \cdot \frac{1}{\sqrt{2 \pi t}} e^{-x^{2} / 2 t} d x=e^{-u^{2} t / 2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi t}} e^{-(x+u t)^{2} / 2 t} d x
$$

by completing the square. But that integral is just a shifted normal distribution, so it evaluates to 1 . Thus $\mathbb{E}\left[e^{-u W}\right]=e^{-u^{2} t / 2}$.

Comment: We can also construct B another way. Let Λ be a PPP on $[0, \infty) \times \mathbb{R}$, where $[0, \infty)$ represents time and \mathbb{R} represents jump size, with mean intensity $d t \cdot f(x) \cdot d x$, where f is a probability density (that is, $\int_{-\infty}^{\infty} f(x) d x=1$). Now if X has probability density f, then $\mathbb{E}[X]=0=\int_{-\infty}^{\infty} x f(x) d x$ and $\mathbb{E}\left[X^{2}\right]=\sigma^{2}=$ $\int_{-\infty}^{\infty} x^{2} f(x) d x$. Let $S(t)$ be the sum of the jumps out to time t. Then

$$
S(t)=\sum_{\substack{\left(t_{i}, x_{i}\right) \in \Lambda \\ t_{i} \leq t}} x_{i}=\int_{0}^{t} \int_{-\infty}^{\infty} x \Lambda(d t, d x)
$$

Now let $B_{N}(t)=\frac{1}{\sqrt{N}} S(N t)=\frac{1}{\sqrt{N}} \int_{0}^{t} \int_{-\infty}^{\infty} x \Lambda(d t, d x)$. Then

$$
\begin{aligned}
\mathbb{E}\left[e^{-u B_{N}(t)}\right] & =\exp \left(\int_{0}^{t N} \int_{-\infty}^{\infty}\left(e^{\frac{u x}{\sqrt{N}}}-1\right) f(x) d s d x\right) \\
& =\exp \left(\int_{0}^{t N} \mathbb{E}\left[e^{\frac{u x}{\sqrt{N}}}-1\right] d s\right) \\
& =\exp \left(\int_{0}^{t N} \mathbb{E}\left[\frac{u X}{\sqrt{N}}+\frac{u^{2} X^{2}}{2 \sqrt{N}}+O\left(\frac{1}{N^{3 / 2}}\right)\right] d s\right) \\
& =\exp \left(\int_{0}^{t N} 0+\frac{u^{2} \sigma^{2}}{2 \sqrt{N}}+O\left(\frac{1}{N^{3 / 2}}\right) d s\right) \\
& =e^{-\frac{1}{2} \sigma^{2} u^{2} t}+O\left(\frac{1}{\sqrt{N}}\right) \sim N\left(0, \sigma^{2} t\right)
\end{aligned}
$$

Thus $B_{N} \longrightarrow B\left(\sigma^{2}, t\right)$ in distribution, since B_{N} is a Markov process and has iid increments - in particular, $B_{N}(t)-B_{N}(s)=B_{N}(t-s)$ in distribution.

Theorem 0.3: 1. B is a standard Brownian motion if and only if B is a Markov process and $B(t)-B(s) \sim$ $N(0, t-s)$ for all $0 \leq s<t$.
2. The map $t \longmapsto B(t)$ is continuous but nowhere differentiable almost surely.
3. If $W(t)=\frac{1}{\sqrt{c}} B(c t)$ for some c, then $W(t)$ and $B(t)$ are equal in distribution.

