Week 8, Lecture 3

Chandan Tankala

12 March 2020

1 Diffusions

Let $X_{t} \in R$ be the solution to the SDE

$$
d X_{t}=a\left(X_{t}\right) d t+b\left(X_{t}\right) d B_{t}
$$

then X_{t} is called a diffusion process with drift $a(x)$ and diffusion $b(x)$.

2 Simulation of a diffusion process

Started from x, until T :

```
Let \(X_{0}=x\)
\(t=0\)
while \(t<T\) :
    \(W \sim N(0, d t)\)
    \(X(t+d t)=X(t)+d t a\left(X_{t}\right)+W b\left(X_{t}\right)\)
```

Equivalently, if X_{t} is a time-homogenous Markov process such that:

$$
\begin{align*}
E[X(t+d t)-X(t)] & =a\left(X_{t}\right) d t+\Theta\left(d t^{2}\right) \tag{1}\\
\operatorname{Var}[X(t+d t)-X(t)] & =b(X(t))^{2} d t+\Theta\left(d t^{2}\right) \tag{2}
\end{align*}
$$

Then:

$$
X_{t}=X_{0}+\int_{0}^{t} a\left(X_{s}\right) d s+\int_{0}^{t} b\left(X_{s}\right) d B_{s}
$$

Recall the example:

$$
\begin{align*}
X_{t} & =B_{t}^{2} \tag{3}\\
d X_{t} & =2 B_{t} d B_{t}+d t \tag{4}\\
B_{t}^{2} & =B_{0}^{2}+\int_{0}^{t} 2 B_{s} d B_{s}+t \tag{5}
\end{align*}
$$

3 Example

ODE: Let us say we solve $f(t)=2 \sqrt{f(t)}$, then $f(t)=f(0)+t^{2}$
SDE: Let us say we solve $d X_{t}=2 \sqrt{X_{t}} d B_{t}+d t$, then $X_{t}=B_{t}^{2}+X_{0}$ is the unique solution.

4 Theorems

Let $p(t, x, y)=P_{x}\left\{X_{t}=y\right\}$. Then this is the unique solution to $\frac{d}{d t} p(t, x, y)=$ $a(x) \frac{d}{d x}+\frac{1}{2} b(x)^{2} \frac{d^{2}}{d x^{2}} p(t, x, y)$ with the boundary condition $p(t, x, y) \xrightarrow{t \rightarrow 0} \delta_{x}(y)$.

Recall: For B_{t},

$$
p(t, x, y)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{(x-y)^{2}}{2 t}}
$$

solves the equation

$$
\frac{d}{d t} p(t, x, y)=\frac{1}{2} \frac{d^{2}}{d x^{2}} p(t, x, y)
$$

Definition: The generator a CTMP $X_{t} \in S$ is $G: f \rightarrow G f$ with $f: S \rightarrow$ $R, G F: S \rightarrow R$ is defined as follows:

$$
G f(x)=\lim _{\epsilon \rightarrow 0} \frac{E_{x}\left[F\left(X_{\epsilon}\right)-f(x)\right]}{\epsilon}
$$

Example: If X_{t} is a CTMC on $\{1,2 \cdots n\}=S$. So if $f: S \rightarrow R$, then $f \in R^{n}$ and $G \in R^{n \times n}$ with

$$
G_{i j}=\left\{\begin{array}{l}
\text { jump rates if } i \neq j \\
- \text { Sum of jump rates if } i=j
\end{array}\right.
$$

Theorem: $\frac{d}{d t} p(t, x, y)=G_{x} p(t, x, y)$
Proof: For diffusions, let $d X=a(X) d t+b(X) d B, G=a(x) \frac{d}{d x}+\frac{1}{2} b(x)^{2} \frac{d^{2}}{d x^{2}}$. Let $F_{t}(x)=E_{x}\left[f\left(X_{t}\right)\right]$. Then:

$$
\begin{align*}
F_{t+\epsilon}(x) & =E_{x}\left[f\left(X_{t+\epsilon}\right)\right] \tag{6}\\
& =E_{x}\left[E\left[f\left(X_{t+\epsilon}\right) \mid X_{\epsilon}\right]\right] \tag{7}\\
& =E_{x}\left[F_{t}\left(X_{\epsilon}\right)\right] \mathbf{B y} \text { time homogeneity and Markov property } \tag{8}
\end{align*}
$$

So

$$
\begin{align*}
\frac{d}{d t} F_{t}(x) & =\lim _{\epsilon \rightarrow 0} \frac{F_{t+\epsilon}(x)-F(x)}{\epsilon} \tag{10}\\
& =\lim _{\epsilon \rightarrow 0} \frac{E_{x}\left[F_{t}\left(X_{\epsilon}\right)\right]-F(x)}{\epsilon} \tag{11}\\
& =G F(x) \text { By definition of } G \tag{12}
\end{align*}
$$

So

$$
\begin{align*}
F_{t}(x) & =E_{x}\left[f\left(X_{y}\right)\right] \tag{13}\\
& =\int_{R} p(t, x, y) f(y) d y \tag{14}\\
\Longrightarrow \frac{d}{d t} F_{t}(x) & =\int_{R} \frac{d}{d t} p(t, x, y) f(y) d y \tag{15}\\
\Longrightarrow G f_{t}(x) & =\int_{R}\left(a(x) \frac{d}{d x}+\frac{1}{2} b(x)^{2} \frac{d^{2}}{d x^{2}}\right) p(t, x, y) f(y) d y \tag{16}
\end{align*}
$$

This is true for all f, so $\frac{d}{d t} p(t, x, y)=G_{x} p(t, x, y)$

